تبلیغات در سایت ما

بانک مقالات فیزیک

چت باکس

نام :
وب :
پیام :
2+2=:
(Refresh)
پشتيباني آنلاين
پشتيباني آنلاين
آمار
آمار مطالب
  • کل مطالب : 12
  • کل نظرات : 0
  • آمار کاربران
  • افراد آنلاین : 1
  • تعداد اعضا : 1
  • آمار بازدید
  • بازدید امروز : 1
  • بازدید دیروز : 0
  • ورودی امروز گوگل : 0
  • ورودی گوگل دیروز : 0
  • آي پي امروز : 0
  • آي پي ديروز : 0
  • بازدید هفته : 1
  • بازدید ماه : 1
  • بازدید سال : 5
  • بازدید کلی : 238
  • اطلاعات شما
  • آی پی : 18.223.0.53
  • مرورگر :
  • سیستم عامل :
  • امروز :
  • درباره ما
    به وبلاگ من خوش آمدید
    خبرنامه
    براي اطلاع از آپدیت شدن سایت در خبرنامه سایت عضو شويد تا جديدترين مطالب به ايميل شما ارسال شود



    امکانات جانبی

    آمار وب سایت:  

    بازدید امروز : 1
    بازدید دیروز : 0
    بازدید هفته : 1
    بازدید ماه : 1
    بازدید کل : 238
    تعداد مطالب : 12
    تعداد نظرات : 0
    تعداد آنلاین : 1

    Alternative content


    نظریه نسبیت انیشتین و سفر در زمان

    لف) زمان و قوانین نسبیت

    مفهوم زمان يکي از اسرارآميزترين مفاهيم در تاريخ فيزيک بوده است و در حال حاضر نيز از مسائل دشوار فيزيک معاصر به‌شمار مي‌رود.  ما مي‌گوييم زمان را با ساعت اندازه مي‌گيريم، اما تنها عقربه‌هاي ساعت را مي‌بينيم نه خود زمان را و عقربه‌هاي ساعت درست مانند موارد مشابه ديگر تنها متغيرهاي فيزيکي هستند. بنابراين به يک معنا ما تقلب مي‌کنيم، زيرا آنچه واقعا مشاهده مي‌کنيم متغيرهايي فيزيکي هستند به عنوان توابعي از متغيرهاي فيزيکي ديگر، اما ما آن را طوري نمايش مي‌دهيم که انگار همه چيز در زمان تغيير مي‌کند.

    یک جمع بندی مهندسی سفر یه زمان در مورد نسبیت عام (قسمت حرکت شتابدار و نیروی گرانشی) 

     

    بدیهی است که  قرآن به عنوان معجزه جاوید آخرین پیامبر(ص)،  دارای جنبه های اعجاز زیادی می باشد نکته ای که دانشمندان به تازگی متوجه آن شده اند اعجازی است که در داستان اصحاب کهف بیان شده است. همانگونه که در بخش نسبیت عام گفنه شد بر جسمی که در محیطی با یک گرانش بالاتر قرار دارد زمان کندتر می گذرد. و همچنین نور در میدان گرانشی بسیا قوی ، در مسیر مستقیم خود منحرف می‌شوند. لازم به ذکر است که  ایجاد تغییر در گرانش  یک محیط، موضوعی کاملا شدنی است و دانشمندان اقدام به شبیه سازی نیروی گرانش کره ماه جهت فضا نوردان نموده اند  و یا حتی بعضی از فضانوردان بودن در نیروی گرانش صفر را در کره زمین تجربه کرده اند.

    داستان اصحاب کهف دارای نکات بسیار زیبا و عجیبی می باشد. افرادی با بودن در مکانی خاص، زمان برای آنها به گونه دیگر گذشته است.  برای افرادی که خارج از این محیط قرار داشته اند 309 سال قمری و برای افرادی که در درون غار بوده اند تنها یک روز گذشته است و یک چنین چیزی  از نظر علمی با در نظر گرفتن امکان تغییر گرانش آن محیط به دلایلی خاص و در نتیجه تغییر گذر زمان برای کسانی که در درون غار بوده اند، کاملا قابل قبول می باشد.

    همانطور که در بخش نسبیت عام مطرح شد نور به هنگام عبوراز کنار یک میدان گرانشی بالا منحرف و خمیده می شود به این معنی که مسیرش تغییر می کند. اما نکته بسیار جالب آن است که در آیه هفدهم از سوره کهف، به زیبایی تغییر مسیر حرکت نور خورشید به هنگام عبور از کنار غار اصحاب کهف، بیان شده است.

    و (نور) خورشید را هنگامی که طلوع کند می بینی که از مقابل غارشان به سمت راست میل می کند و هنگامی که غروب می کند (نورش را) از سمت چب آنان می برد و متمایل می شود و آنها در فضای وسیعی از آن غارند. این از نشانه ها و معجزات خداوند است. (کهف/17) 

    به جمله:" این از نشانه ها و معجزات خداوند است"  دقت کنید. که بلافاصله بعد از بیان تغییر مسیر نور خورشید بیان شده است. و به روشنی مشخص است که موقعیت (نور) خورشید به هنگام عبور از کنار غار، در آن مقطع خاص(به علت تغییر گرانش در محیط غار، و یا هر عامل دیگر) دارای شرایط خاصی بوده است. و به هیچ وجه بیان موقعیت خورشید برای مشخص کردن موقعیت غار نمی باشد زیرا این روشی مناسب برای تعیین موقعیت غار نمی باشد و از طرف دیگر تابش نور خورشید در شرایط خاص باعث ایجاد تغییر خاصی برای افرادی که در درون غار بوده اند، نمی شود.  

    لازم به ذکر است این میدان گرانشی بالا در غار، تنها در کسری از ثانیه وجود داشته  است که به همین دلیل تنها بر پرتو نور که دارای سرعت بسیار زیاد می باشد تاثیر گذاشته است. و لحظه اعمال این نیروی گرانشی بالا در زمان طلوع خورشید و در طی زمان بسیار ناچیز(لحظه رفتن به آینده) بوده است و همچنین بعد از گذشت 309 سال برای سایر افراد دقیقا در غروب چنان روزی ،  زمان حضور دوباره آنها در غار بوده است. و تغییر در شرایط غار به هنگام غروب خورشید، باعث تغییر مسیر نور شده است.

    در آیه هفدهم به نکته جالب دیگری نیز اشاره شده است. " آنها در فضای وسیعی از آن غارند" اما بودن در یک میدان گرانش بالا باعث کشیدگی می گردد و در میدان گرانشی بالا، ماده به كلي تجزيه و جزئی از آن میدان گرانشی می گردد،که به نوعی در این آیه به آن اشاره شده است.

    در مورد اینکه غاری که اصحاب کهف در آن برهه از زمان در آن قرار داشته اند دارای شرایطی خاص بوده است در آیه زیر مشخص شده است:

    ... اگر بر آنها اطلاع یابی (و از نزدیک ببینی) مسلما گریزان به آنها پشت می کنی و همه وجودت از آنان پر از ترس می شود. (کهف/18)

    لازم به ذکر است که: سرعت گریز، حداقل سرعت ممکن برای یک جسم می‌باشد تا بتواند از میدان گرانشی جسمی دیگر فرار کند. آنچه از آیه مشخص است این است که غار در آن مقطع زمانی خاص دارای شرایط خاصی بوده است. همچنین از آیات زیر مشخص می شود که گذر زمان برای اصحاب کهف با افرادی که خارج از غار بوده اند متفاوت بوده است. و این به خوبی نشان می دهد که اینگونه نبوده که آنها هم مانند سایر افراد 309 سال بر آنها گذشته و در طی این زمان آنها در خواب بوده اند، (مشکل تعذیه در این مدت) بلکه واقعا آنها تنها یک روز در آن غار به خواب رفته بودند  و به علت قرار گرفتن در یک میدان گرانشی بالا، گذر زمان بر آنها کندتر گذشته و بعد از یک روز (معادل 309 سال برای افرادی که خارج از غار بوده اند) که از خواب بیدار می شوند، احساس گرسنگی کرده و از میان خودشان، فردی را برای تهیه غذا انتخاب می کنند.

    ... گوینده ای از آنها گفت: چقدر (در اینجا) مانده اید؟ گفتند: یک روز یا مقداری از روز مانده ایم. (و گروهی دیگر) گفتند: پروردگارتان به مقداری که مانده اید داناتر است. حالا یکی از خودتان را با این پول نقره به سوی شهر بفرستید، و باید درست بنگرید که کدام یک از اهالی آن جا طعامش پاکیزه تر است پس از آن برای شما روزیی بیاورد. (کهف/19)

    توضیح داده شد که بودن در یک میدان گرانشی بالا، باعث می شود که ماده به کلی  تجزیه شود. در آیه زیر اشاره شده است که این معجزه به نوعی نشان دهنده قیامت و برنگیخته شدن پس از مرگ است. یعنی پس از اینکه اجزاء بدنمان متلاشی و تجزیه شد خداوند دوباره آنها را جمع می کند. البته ممکن است این افزایش میدان گرانش به میزانی که باعث متلاشی شدن اجزاء بدن آنها شده باشد نبوده و تنها باعث ایجاد تغغیراتی در بدن آنها شده باشد که اگر کسی به آنها در آن مقطع زمانی نگاه می کرده دچار رعب و ترس زیادی می شده اشت.

    و اینگونه (مردم آن دیار را) از (وضع) آنها آگاه ساختیم آن گاه که در میان خودشان در کار بعث خود نزاع داشتند، تا بدانند که وعده خدا حق است و در (آمدن) روز قیامت تردیدی نیست.(کهف/20)

     

    البته لازم به ذکر است که بیان تغییر میدان گرانشی در غار، تنها یک مثال می باشد و ممکن است این تغییر در محیط غار، ناشی از عامل دیگری باشد که هم باعث تغییر در گذر زمان و هم  تغییر مسیر نور خورشید در هنگام عبور از کنار غار گردد.

    در پست های بعدی به صورت دقیق در مورد نسبیت توضیح میدم فقط اینو بدونید که آلبرت یه دونس...

    قوانین نیوتون

    قوانین حرکت نیوتن

     
     
    پرش به ناوبریپرش به جستجو
     
    ققوانین حرکت نیوتن عبارت است از سه قانون فیزیکی که بنیان مکانیک کلاسیک را شکل می‌دهند. این قوانین ارتباط مابین نیروهای وارد آمده بر یک جسم و حرکت آن را به دست می‌دهد. این قوانین را می‌توان بدین صورت خلاصه کرد:

    قانون اول: در یک دستگاه مرجع جسمی که تحت تأثیر یک نیروی خارجی نباشد یا ساکن است، یا با سرعت ثابت در حال حرکت است.

    قانون دوم: شتاب یک جسم برابر است با مجموع نیروهای وارده بر جسم تقسیم بر جرم آن. فرمولی که از این قانون برمی‌آید ({\displaystyle F=ma}{\displaystyle F=ma}) به معادله بنیادین مکانیک کلاسیک معروف است. اصول این معادله به این است که شتاب جسمی که تحت تأثیر نیرویی ایجاد شده، متناسب و در جهت حرکت آن است.

    قانون سوم: هر گاه جسمی به جسم دیگر نیرو وارد کند، جسم دوم نیرویی با همان اندازه و در جهت مخالف به جسم اول وارد می‌کند.[۱]

    این قوانین نخستین بار در کتاب اصول ریاضی فلسفه طبیعی نیوتن در سال ۱۶۸۷ مطرح شدند.

    قوانین نیوتون[ویرایش]

    قانون اول[ویرایش]

    فیلسوفان کهن بر این باور بودند که اجسام در حالت طبیعی ساکن هستند و برای اینکه یک جسم با سرعت یکنواخت به حرکت خود ادامه دهد، باید پیوسته نیرویی بر آن وارد شود در غیراین صورت به حالت «طبیعی» خود برمی‌گردد و ساکن می‌شود. اما نیوتن با بهره‌گیری از پژوهشهای گالیله به این پندار درست رسید که اگر جسمی با سرعت یکنواخت به حرکت درآید و نیرویی بیرونی به آن وارد نشود تا ابد با شتاب صفر به حرکت خود ادامه خواهد داد. این ویژگی را نیوتن در نخستین قانون حرکت خود چنین بیان می‌کند:

    اگر برآیند نیروهای وارد بر یک جسم صفر باشد، اگر جسم در حالت سکون باشد تا ابد ساکن می‌ماند، و اگر جسم در حال حرکت (با سرعت ثابت) باشد تا ابد با همان سرعت و در همان جهت به حرکتش ادامه می‌دهد. به این قانون، قانونلختی یا اینرسی - Inertia- هم می‌گویند.

    قانون دوم[ویرایش]

    این قانون در سال ۱۶۸۸ در کتاب اصول ریاضی فلسفه طبیعی توسط نیوتن منتشر شد. این قانون به رابطه بین نیروهای واردآمده به یک جسم و شتاب همان جسم می‌پردازد.

    {\displaystyle \Sigma _{i}F_{i}\;=\;ma}{\displaystyle \Sigma _{i}F_{i}\;=\;ma}

    بنا بر قانون اول نیوتن اگر بر جسمی نیرو وارد نشود جسم یا ساکن می‌ماند یا حرکت یکنواخت بر خط راست خواهد داشت. نتیجه آشکار قانون اول این است که اگر بر جسم نیرو وارد شود جسم ساکن نمی‌ماند و حرکت یکنواخت بر خط راست نیز نخواهد داشت، در این صورت وارد کردن نیرو بر جسم به آن شتاب می‌دهد. قانون دوم نیوتن در واقع رابطه شتاب با نیرویی که بر آن وارد می‌شود را بیان می‌کند. شتاب جسمی به جرم m که نیروی F بر آن وارد می‌شود هم جهت و متناسب با نیروی وارد بر آن است و با جرم جسم نسبت عکس دارد. این بیان را می‌توان بصورت زیر نوشت:

    {\displaystyle a={\frac {F}{m}}}{\displaystyle a={\frac {F}{m}}}

    F برآیند نیروهایی است که به علت اثر اجسام دیگر روی جسم مورد نظر وارد می‌شود. a شتاب آن و m جرم جسم است. یکای نیرو در SI نیوتون (N) که از رابطهٔ بالا تعریف می‌شود. در رابطه جرم بر حسب کیلوگرم(kg)و شتاب برحسب متر بر مجذور ثانیه (m/s2) می‌باشد.[۲]

    دستگاه مختصات لخت[ویرایش]

    این قانون تنها در دستگاه‌های مختصات لخت صحیح می‌باشد. اینکه در دستگاه‌های غیر لخت چه رابطه‌ای بین نیروهای وارد آمده و شتاب شیء وجود دارد.

    دستگاه‌های غیر لخت[ویرایش]

    این‌گونه دستگاه‌ها بر این اصل پایدارند که هیچ چیز در کره زمین در جای خود ثابت نمی‌باشد، به این دلیل که کرهٔ زمین دارای حرکت وضعی و انتقالی و… در فضا می‌باشد. این‌گونه دستگاه‌ها تکیه گاه یا همان مرجع حرکت جسم (زمین) را به صورت گردان برای ما ایجاد می‌کنند. از این‌گونه دستگاه‌ها در طراحی‌ها و آزمایش‌هایی استفاده می‌شود که لازم است تحت شرایط واقعی انجام شوند مانند:پرتاب موشک‌ها و ماهواره‌ها از زمین به فضا.

    قانون سوم[ویرایش]

    سومین قانون حرکت نیوتون به این صورت بیان می‌شود که "هر عملی را عکس العملی است؛ مساوی آن و در جهت خلاف آن .. این قانون به قانون کنش و واکنش هم معروف می‌باشد.

    یعنی که هرگاه جسمی به جسمی دیگر نیرو وارد کند جسم دوم نیز نیرویی به همان بزرگی ولی در خلاف جهت بر جسم اوّل وارد می‌کند.

    باید توجّه داشت که این دو نیرو به دو جسم مختلف وارد می‌گردند و نباید آنها را با هم برآیندگیری کرد. مثلاً هنگامی که شخصی بر دیوار نیرو وارد می‌کند دیوار نیز بر شخص نیرو وارد می‌کند اندازه این دو نیرو باهم برابر می‌باشد ولی نیروی اوّل به دیوار وارد می‌شود و نیروی دوم به شخص.

    قانون سوم نیوتن معمولاً به دو شکل بیان می‌شود: شکل ضعیف و شکل قوی. در شکل ضعیف تنها به این اکتفا می‌شود که نیروی واکنش قرینه نیروی کنش است یعنی {\displaystyle {\vec {F}}_{1\to 2}=-{\vec {F}}_{2\to 1}}{\displaystyle {\vec {F}}_{1\to 2}=-{\vec {F}}_{2\to 1}} (شاخصهای پایین معرف آن است که نیرو از جسم ۱ به جسم ۲ وارد می‌شود یا برعکس). اما در شکل قوی علاوه بر این فرض می‌شود که این نیروها در امتداد خط واصل میان دو ذره می‌باشند یعنی {\displaystyle {\vec {F}}_{1\to 2}\propto ({\vec {r}}_{1}-{\vec {r}}_{2})}{\displaystyle {\vec {F}}_{1\to 2}\propto ({\vec {r}}_{1}-{\vec {r}}_{2})}.

    قانون سوم همیشه در طبیعت صادق نیست مثلاً در مورد نیروهای الکترومغناطیسی وقتی که اجسام مؤثر برهم از یکدیگر بسیار دور باشند یا به تندی شتابدار شوند یا در مورد هر نیرویی که با سرعتهای معمولی از یک جسم به جسم دیگر منتقل شود، صدق نمی‌کند. خوشبختانه در مکانیک کلاسیک از بسط‌های قانون سوم استفاده کمی می‌شود و مشکلات آن تأثیر چندانی در مکانیک کلاسیک ندارند.

    مغلطه‌ای از قانون سوم نیوتن[ویرایش]

    بی دقتی در استفاده از قانون کنش و واکنش و مسئله تناقض: فرض کنید که اسبی کالسکه‌ای را می‌کشد طبق قانون سوم نیوتن کالسکه نیز با همان نیرو اسب را در جهت مخالف می‌کشد، پس اسب نمی‌تواند کالسکه را به حرکت درآورد؟ اشکال این استدلال به این صورت است: اگر می‌خواهیم بدانیم که آیا اسب می‌تواند حرکت کند یا نه، باید نیروهای وارد بر اسب را در نظر بگیریم. نیرویی که بر کالسکه وارد می‌شود هیچ ربطی به این مسئله ندارد.

    اسب به این دلیل می‌تواند حرکت کند که نیرویی که با پاهایش وارد می‌کند بزرگتر از نیرویی است که کالسکه با آن اسب را به طرف عقب می‌کشد و کالسکه به این دلیل به حرکت در می‌آید که نیرویی که اسب با آن کالسکه را به طرف جلو می‌کشد بزرگتر از نیروهای اصطکاکی است که کالسکه را به طرف عقب می‌کشند. برای اینکه بدانید یک جسم حرکت می‌کند باید نیروهای وارد بر آنرا بررسی کنیم.

    تئوری مکانیک کوانتوم

    مکانیک کوانتومی

    بنیادی‌ترین تفاوت مکانیک کوانتومی با مکانیک کلاسیک در این است که مکانیک کوانتومی توصیفی سازگار با آزمایش‌ها از ذرات در اندازه‌های اتمی و زیراتمی در اختیار می‌دهد، در حالی که مکانیک کلاسیک در قلمرو میکروسکوپی به نتایج نادرست می‌انجامد. در حقیقت، مکانیک کوانتومی بنیادی‌تر از مکانیک نیوتنی و الکترومغناطیس کلاسیک است؛ زیرا در مقیاس‌های اتمی و زیراتمی که این نظریه‌ها با شکست مواجه می‌شوند، با دقت زیادی بسیاری از پدیده‌ها را توصیف می‌کند. مکانیک کوانتومی به همراه نسبیت پایه‌های فیزیک جدید را تشکیل می‌دهند.

    مکانیک کوانتومی یا نظریۀ کوانتومی شامل نظریه‌ای دربارهٔ ماده و تابش الکترومغناطیسی و برهمکنش میان ماده و تابش است.[۱]

    آشنایی[ویرایش]

    واژهٔ کوانتوم (به معنی «بسته» یا «دانه») در مکانیک کوانتومی از اینجا می‌آید که این نظریه به بعضی از کمیت‌های فیزیکی (مانند انرژی اتم ساکن) در شرایط خاص مقدارهای گسسته‌ای نسبت می‌دهد. پایه‌های مکانیک کوانتومی در نیمهٔ اول قرن بیستم به کوشش ورنر هایزنبرگ، ماکس پلانک،آلبرت اینشتین، لویی دوبروی، نیلز بور، اروین شرودینگر، ماکس بورن، جان فون نویمان، پاول دیراک، ولفگانگ پاولی و دیگران ساخته شد. بعضی از جنبه‌های بنیادی این نظریه هنوز هم در حال پیشرفت است.

    در ابتدای قرن بیستم، کشفیات و تجربه‌های زیادی نشان می‌دادند که در مقیاس اتمی نظریه‌های کلاسیک نمی‌توانند توصیف کاملی از پدیده‌ها ارائه دهند. وجود همین نارسایی‌ها موجب نخستین ایده‌ها و ابداع‌ها در مسیر ایجاد نظریۀ کوانتومی شد. نمونۀ مشهور این بود که اگر قرار است مکانیک نیوتنی و الکترومغناطیس کلاسیک بر رفتار اتم حاکم باشند، الکترون‌ها باید به سرعت به سمت هستۀ اتم حرکت و بر روی آن سقوط می‌کردند و در نتیجه اتم‌ها ناپایدار می‌شدند، ولی در دنیای واقعی الکترون‌ها در نواحی خاصی دور اتم‌ها باقی می‌مانند و چنین سقوطی مشاهده نمی‌شود. اولین راه حل این تناقض را نیلز بور با پیشنهاد فرضیه‌اش دایر بر وجود مدارهای مانا مطرح کرد که از قضا در توصیف طیف اتم هیدروژن موفق هم بود.

    پدیدهٔ دیگری که در این مسیر جلب توجه می‌کرد رفتار امواج الکترومغناطیسی مانند نور در برهمکنش با ماده بود. ماکس پلانک در سال ۱۹۰۰ هنگام مطالعۀ تابش جسم سیاه پیشنهاد کرد که برای توصیف صحیح مسئلۀ تابش جسم سیاه می‌توان انرژی این امواج را به شکل بسته‌های کوچکی (کوانتوم) درنظر گرفت. آلبرت اینشتین از این فکر بهره برد و نشان داد که امواجی مثل نور را می‌توان با ذره‌ای به نام فوتون که انرژی‌اش به بسامد موج بستگی دارد توصیف کرد:

    {\displaystyle E=h\nu \ }{\displaystyle E=h\nu \ }

    در ادامه، دوبروی توصیف موج‌گونۀ حرکت ذرات را مطرح کرد که اکنون به دوگانگی موج-ذره موسوم است. برطبق آن، ذرات دو نوع رفتار (موجی و ذره‌ای) را از خود نشان می‌دهند. نظریه کوانتومی که در ابتدا با کشف نظری فوتون به کوشش ماکس پلانک در ۱۹۰۰ آغاز شد و با کارهای نیلز بور به پیشرفت چشمگیری رسید هنوز نظریۀ منسجمی نبود، بلکه مجموعه‌ای بود از فرضیات و اصول و قضایا و دستورالعمل‌های محاسبه‌ای. در واقع، هر مسئلۀ کوانتومی را ابتدا به روش مکانیک کلاسیک حل می‌کردند و سپس جواب را یا با شرایط کوانتومی وفق می‌داند یا با اصل تطابق به زبان کوانتومی درمی‌آورند. به عبارت دیگر، تلاش‌ها بیشتر بر اساس حدس‌های زیرکانه بود تا استدلال‌های منطقی.

    تلاش‌ها برای تبیین تناقضات و ابداع رهیافت‌های جدید به تکوین ساختار جدیدی موسوم به مکانیک کوانتومی انجامید که دو فرمولبندی جداگانه دارد (بعداً معلوم شد که این دو هم‌ارزند): مکانیک ماتریسی (عمدتاً به کوشش هایزنبرگ) و مکانیک موجی (بیشتر به همت شرودینگر). مثلاً، ایدهٔ توصیف ذرات با امواج مولّد ابداع مفهوم بسته‌های موج شد، و در نهایت نیز تلاش برای یافتن معادلات حاکم بر تحول زمانی این بسته‌های موج به معادلۀ موج یا معادلۀ شرودینگر منتهی شد.

    در توصیف شرودینگر از مکانیک کوانتومی، حالت هر سیستم فیزیکی در هر لحظه با تابع موج مختلطی توصیف می‌شود که از حل معادلۀ شرودینگر به دست می‌آید:

    معادله وابسته به زمان شرودینگر (عمومی) (کُلی)

    {\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi ={\hat {H}}\Psi }{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi ={\hat {H}}\Psi }

    چون تابع موج کمیتی مختلط است، خود مستقیماً مُبیّن کمیتی فیزیکی نیست، اما با استفاده از این تابع می‌توان احتمال به دست آمدن مقادیر مختلف حاصل از اندازه‌گیری هر کمیت فیزیکی را پیش‌بینی کرد. در حقیقت، این احتمال با ضریبی از مربع قدرمطلق تابع موج، که کمیتی حقیقی است، برابر است. با دانستن تابع موج مثلاً می‌توان احتمال یافتن الکترون در ناحیهٔ خاصی در اطراف هسته در یک زمان مشخص یا احتمال به دست آمدن مقدار خاصی برای کمیت تکانۀ زاویه‌ای سیستم را محاسبه کرد. یا مثلاً به کمک تابع موج و توزیع احتمال به‌دست آمده از آن می‌توان محتمل‌ترین مکان (یا مکان‌های) حضور ذره در فضا را یافت (در مورد الکترون‌های اتم گاهی به آن اُربیتال می‌گویند). البته معنی این حرف این نیست که الکترون در تمام ناحیه پخش شده‌ است، بلکه الکترون در یک ناحیه از فضا یا هست یا نیست.

    در مکانیک کلاسیک پیش‌بینی تحول زمانی مقادیر کمیت‌ها و اندازه‌گیری مقادیر کمیت‌ها در نظریه با هر دقت دلخواه ممکن است و تنها محدودیتِ موجود خطای متعارف آزمایش و آزمایشگر یا فقدان داده‌های اولیه کافی است. اما در مکانیک کوانتومی فرایند اندازه‌گیری محدودیتی ذاتی به همراه خود دارد. در واقع، نمی‌توان کمیت‌هایی مانند مکان و تکانه (کمیت‌های مزدوج) را هم‌زمان و با هر دقت دلخواه اندازه‌گیری کرد. اندازه‌گیری دقیق‌تر هر یک از این کمیت‌ها منجر به از دست رفتن هرچه بیشتر داده‌های مربوط به کمیت دیگر می‌شود. این مفهوم، که به اصل عدم قطعیت هایزنبرگ مشهور است، از مفاهیم بسیار مهم در مکانیک کوانتومی است و با مفهوم بنیادین «تأثیر فرایند اندازه‌گیری در حالت سیستم»، که از ابداعات اختصاصی مکانیک کوانتومی (در برابر مکانیک کلاسیک است)، همبسته است.

    توصیف مکانیک کوانتومی از رفتار سامانه‌های فیزیکی اهمیت زیادی دارد، و بسیاری از شاخه‌های دیگر فیزیک و شیمی از مکانیک کوانتومی در نقش چهارچوب خود استفاده می‌کنند. از جملۀ این شاخه‌ها باید اشاره کرد به فیزیک مادۀ چگال، فیزیک حالت جامد، فیزیک اتمی، فیزیک مولکولی،شیمی محاسباتی، شیمی کوانتومی، فیزیک ذرات بنیادی، فیزیک هسته‌ای. مکانیک کوانتومی علاوه بر اینکه دنیای ذرات بسیار ریز را توصیف می‌کند، برای توضیح برخی از پدیده‌های بزرگ‌مقیاس (ماکروسکوپیک) مانند ابررسانایی و ابرشارگی هم کاربرد دارد. همچنین، کاربردهای وسیعی در حوزه فناوری‌های کاربردی بر مفاهیم و دستاوردهای مکانیک کوانتومی استوارند.

    مکتب‌های فکری مکانیک کوانتومی[ویرایش]

    نظریه‌های گوناگونی دربارۀ مسئلۀ اندازه‌گیری در مکانیک کوانتومی مطرح شده است. از این میان، سه دیدگاه شایان ذکرند: دیدگاه واقع‌گرایانه که اینشتین طرفدار آن بود، دیدگاه سنتی که به تفسیر کپنهاگی هم معروف است و نیلز بور از آن حمایت می‌کرد، دیدگاه ندانم‌گرایانه یا آگنوستیک که طرفداران آن از اظهارنظر به طور کلی خودداری می‌کردند.[۲]

    مکانیک کوانتومی و فیزیک کلاسیک[ویرایش]

     
    نمایش دوگانگی موج-ذره با یک بسته موج فوتونی

    آثار و پدیده‌هایی که در مکانیک کوانتومی و نسبیت پیش‌بینی می‌شوند به ترتیب فقط برای اجسام بسیار ریز و در سرعت‌های بسیار بالا آشکار می‌شوند. تقریباً همهٔ پدیده‌هایی که انسان در زندگی روزمره با آن‌ها سروکار دارد با دقت بسیار خوبی با فیزیک نیوتنی پیش‌بینی‌پذیر است.

    در ابعاد بسیار کوچک ماده (مثلاً در حد نانومتر) یا در انرژی‌های بسیار پایین، مکانیک کوانتومی اثرهایی را پیش‌بینی می‌کند که فیزیک کلاسیک از پیش‌بینی آن ناتوان است، ولی اگر ابعاد ماده یا میزان انرژی را افزایش دهیم، به حدی می‌رسیم که می‌توانیم قوانین فیزیک کلاسیک را بدون اینکه خطای فاحشی مرتکب شویم برای توصیف پدیده‌ها به کار ببریم. به این «حد» که در آن قوانین فیزیک کلاسیک را (که معمولاً ساده‌ترند) می‌توان به جای مکانیک کوانتومی در توصیف دقیقی از پدیده‌ها به کار برد حد کلاسیک گفته می‌شود.

    کوشش برای نظریهٔ وحدت‌یافته[ویرایش]

    وقتی می‌خواهیم مکانیک کوانتومی را با نظریهٔ نسبیت عام (که توصیف‌گر فضا-زمان در حضور گرانش است) ترکیب کنیم، به ناسازگاری‌هایی برمی‌خوریم که این کار را ناممکن می‌کند. حل این ناسازگاری‌ها هدف بزرگ فیزیکدانان قرن‌های بیستم وبیست‌ویکم است. فیزیکدانان بزرگی همچون استیون هاوکینگ در راه رسیدن به نظریهٔ وحدت‌یافتهٔ نهایی تلاش می‌کنند؛ نظریه‌ای که نه تنها مدل‌های مختلف فیزیک زیراتمی را یکی کند، بلکه چهار نیروی بنیادی طبیعت (نیروی قوی، نیروی ضعیف،الکترومغناطیس و گرانش) را نیز به شکل جلوه‌های مختلفی از یک نیرو یا پدیده نشان دهد.

    مکانیک کوانتومی و زیست‌شناسی[ویرایش]

    تحقیقات چند مؤسسه در آمریکا و هلند نشان داده است که بسیاری از فرایندهای زیستی از مکانیک کوانتومی بهره می‌برند. قبلاً تصور می‌شد فتوسنتز گیاهان فرایندی بر پایۀ بیوشیمی است، اما تحقیقات پروفسور فلمینگ و همکارانش در دانشگاه برکلی و دانشگاه واشنگتن در سنت لوییس به کشف مرحله‌ای کلیدی از فرایند فتوسنتز منجر شده که بر مکانیک کوانتومی استوار است. همچنین، پژوهش‌های کریستوفر آلتمن، پژوهشگری از مؤسسه دانش نانوی کاولی در هلند، حاکی از آن است که نحوۀ کارکرد سلول‌های عصبی خصوصاً در مغز، که تا مدت‌ها فرایندی بر پایۀ فعالیت‌های الکتریکی و بیوشیمی پنداشته می‌شد و محل بحث ساختارگرایان و ماتریالیست‌ها و زیستشناس‌ها بود، شامل سیستم‌های کوانتومی بسیاری است. این پژوهش‌ها نشان می‌دهد که سلول عصبی حلزون دریایی می‌تواند از نیروهای کوانتومی برای پردازش اطلاعات استفاده کند. در انسان نیز فیزیک کوانتومی احتمالاً در فرایند تفکر دخیل است.[۳]

    تئوری مکانیک اماری

    مکانیک آماری


    مکانیک آماری
    ، یکی از مباحث مطرح در فیزیک است که به سیستم‌هایی با تعداد متغیرهای بسیار زیاد می‌پردازد. این متغیرها می‌توانند ذراتی چون اتم‌ها، مولکول‌ها، یا ذرات بنیادی باشند که تعداد آن‌ها می‌تواند هم‌مرتبه با عدد آووگادرو باشد. در این مبحث، با استفاده از خاصیتهای میکروسکوپی این ذرات مانند ساختار اتمی و برهمکنش بین آن‌ها، اطلاعاتی در مورد خواص ماکروسکوپی سیستم مانند فشار، انتروپی و انرژی آزاد گیبس، از طریق محاسبات و روش‌های آماری به دست می‌آید. مثلاً معادله‌های حالت در ترمودینامیک توسط مدل‌های میکروسکوپی-آماری مشتق می‌شوند.

    مکانیک آماری شکوفایی خود را قبل از همه، مدیون دانشمندان کلاسیکی نظیر لودویگ بولتزمان، جوسایا ویلارد گیبز و جیمز کلرک ماکسول می‌باشد.

    هدف مکانیک آماری پیش گویی، درک پدیده‌های ماکروسکوپی و محاسبه خواص آن‌ها از روی خواص مولکولهای منفرد سازنده آن سیستم است .[[۱]]

    عکس

    مکانیک آماری همانند پلی است که خواص ذره­ای (نتایج مکانیک کوانتومی) را به خواص ماکروسکوپی (نتایج ترمودینامیک) سیستم مربوط می‌کند.

    ترمودینامیک قادر است بین بسیاری از خواص ارتباط برقرار نماید، ولی در رابطه با مقدار آن و علت­ها هیچ اطلاعاتی نمی­دهد. برعکس، در مکانیک آماری صحبت از علت­ها، چراها و اندازه­گیری مقادیر است.

    اصل برنولی

    معادله برنولی

    از ویکی‌پدیا، دانشنامهٔ آزاد
     
     
    پرش به ناوبریپرش به جستجو

    معادله برنولی یا اصل برنولی در مکانیک سیالات رفتار شاره را در جریان یکنواخت توضیح می‌دهد و فرم ریاضی قانون بقای انرژی در سیالات است. به زبان ساده چنین است: در شاره‌ای که جریان دارد، افزایش سرعت جریان با کاهش فشار هم‌زمان است، به شرطی که ارتفاع سیال ثابت بماند. معادله برنولی بیان دقیق‌تر این اصل است، به عبارت دیگر اگر سرعت یک سیال افزایش پیدا کند، فشاری که بر یک سطح وارد می‌کند کاهش می‌یابد و بالعکس.

    نام این اصل از نام ریاضی‌دان سوئیسی دانیل برنولی گرفته شده، اگر چه پیش از او لئونارد اویلر و دیگران نیز آن را می‌دانستند.

    این معادله که مبین بقای انرژی در سیالات است:

    {\displaystyle {v^{2} \over 2}+gh+{p \over \rho }=b}{\displaystyle {v^{2} \over 2}+gh+{p \over \rho }=b}

    {\displaystyle v}v سرعت شاره

    {\displaystyle g}g شتاب گرانش زمین

    {\displaystyle h}h ارتفاع از نقطه‌ای دلخواه در جهت گرانش زمین

    {\displaystyle p}p فشار در شاره

    ρ چگالی شاره

    و {\displaystyle b}b عددی ثابت معروف به «ثابت برنولی» است. معادله بالا به شرطی درست است که جریان پایا، ناوشکسان و تراکم‌ناپذیر باشد و از اصطکاک صرف نظر کنیم و همچنین در مسیر حرکت سیال مبادله گرما یا کار نداشته باشد.

    بیان هد این معادله که بیانگر بقا ارتفاع یا هد سیال است (و از تقسیم معادله بر شتاب گرانش بدست می‌آید) چنین است:

    {\displaystyle P/(Rg)+V^{2}/2g+z=constant\,}{\displaystyle P/(Rg)+V^{2}/2g+z=constant\,}

    در این رابطه P فشار، R دانسیته، g شتاب گرانش زمین، V سرعت حرکت سیال و z ارتفاع سیال از سطح مبنا است. به هر ترم از رابطه فوق هد گفته می‌شود؛ بنابراین عبارت {\displaystyle P/Rg\,}{\displaystyle P/Rg\,} هد فشار، {\displaystyle V^{2}/2g\,}{\displaystyle V^{2}/2g\,} هد سرعت و z را هد ارتفاع می‌نامند. براساس این رابطه برای یک سیال همواره مجموع سه هد فشار، سرعتی و ارتفاع مقدار ثابتی است.

    از آنجا که در تمام کاربردهای عملی ما با اصطکاک (جریان‌های وشکسان) روبرو هستیم و از طرفی جهت جابجایی سیال باید از وسایلی مانند پمپ جهت افزایش انرژی سیال استفاده کنیم و همچنین اگر دمای سیال با دمای محیط متفاوت باشد انتقال گرما هم خواهیم داشت، بنابراین از رابطه اصلاح شده به فرم زیر استفاده می‌کنیم:

    {\displaystyle Q-W+H=d(P/(Rg)+V^{2}/2g+z)\,}{\displaystyle Q-W+H=d(P/(Rg)+V^{2}/2g+z)\,}

    که در این رابطه Q هد مقدار گرمای منتقل شده، W هد کار انجام شده و H هد اتلافات انرژی ناشی از اصطکاک است. منظور از d در طرف دوم نیز تغییرات بین دو نقطه دلخواه در مسیر است.

    مثال‌هایی از اصل برنولی[ویرایش]

    قطاری که به سرعت حرکت می‌کند، می‌تواند شخصی را که زیادی نزدیک آن ایستاده را به خود جذب کند که اگر سبب تصادف شود، بسیار خطرناک است؛ بنابراین جذب یک دوچرخه سوار توسط یک ماشین سنگین که به سرعت از نزدیک آن می‌گذرد نیز دور از ذهن نیست! تند آبها و گردابها نیز به همین دلیل، شناگران را به میان خود می‌کشند و حتی غرق می‌کنند.بخشی از نیروی بالابری هواپیما نیز با اصل برنولی کار می‌کند طراحی بال به گونه‌ای است که تندی هوا در بالای بال بیشتر از پایین بال است چون مسیر طولانی تری را طی می‌کند پس فشار هوای بالای بال کمتر از فشار هوا در پایین بال است و نیروی خالصی به نام نیروی بالابری در هواپیما ایجاد خواهد شد.

    نظریه نسبیت عام انیشتین

    این یک مقالهٔ خوب است. برای اطلاعات بیشتر اینجا را کلیک کنید.

    نسبیت عام

    از ویکی‌پدیا، دانشنامهٔ آزاد
     
    پرش به ناوبریپرش به جستجو
     
    یک سیاهچالهٔ شبیه‌سازی‌شده با ۱۰جرم خورشیدی که از فاصلهٔ ۶۰۰ کیلومتری دیده می‌شود و در زمینه هم کهکشان راه شیری قرار دارد

    نسبیت عام (به انگلیسیGeneral relativity) نظریه‌ای هندسی برای گرانش است که در سال ۱۹۱۵[۱] توسط آلبرت اینشتین منتشر شد و توصیف کنونی گرانش در فیزیک نوین است. این نظریه تعمیمی بر نظریهٔ نسبیت خاص و قانون جهانی گرانش نیوتون است که توصیف یکپارچه‌ای از گرانش به‌عنوان یک ویژگی هندسی فضا–زمان ارائه می‌دهد.

    این نظریه، گرانش را به‌عنوان یک عامل هندسی و نه یک نیرو بررسی می‌کند. در این نظریه فضا–زمان توسط هندسهٔ ریمانی بررسی می‌شود. خمش فضازمان مستقیماً با انرژی و تکانهٔ کل ماده و تابش موجود متناسب است. این رابطه توسط سیستمی از معادلات دیفرانسیل با مشتقات پاره‌ای به نام معادلات میدان اینشتین نمایش داده می‌شوند. پایهٔ نظری گرانش در کیهان‌شناسی، این نظریه و تعمیم‌های آن است.

    نظریهٔ اینشتین جنبه‌های اخترفیزیکی مهمی دارد. مثلاً این نظریه وجود سیاهچاله‌ها را به‌عنوان وضعیت پایانی ستاره‌های بزرگ پیش‌بینی می‌کند. شواهد گسترده‌ای موجود است که تابش بسیار شدید منتشرشده از برخی انواع اجسام اخترفیزیکی ناشی از وجود سیاهچاله‌ها است. مثلاً ریزاختروش‌ها و هستهٔ کهکشانی فعال، به‌ترتیب نتیجهٔ وجود سیاهچاله‌های ستاره‌وار و سیاه‌چاله‌های کلان‌جرم هستند. خم شدن نور بر اثر گرانش می‌تواند منجر به پدیدهٔ همگرایی گرانشیشود که بر اثر آن چندین تصویر از یک جسم اخترفیزیکی دوردست در آسمان دیده می‌شود. نسبیت عام همچنین وجود امواج گرانشی را پیش‌بینی می‌کند که مشاهدهٔ آن‌ها برای نخستین بار در سال ۲۰۱۶ و پس از گذشت صد سال از پیش‌بینی اینشتین درمورد وجود این امواج، به کمک تأسیسات لایگو (LIGO) صورت پذیرفت،[۲][۳] هرچند قبلاً وجود این امواج به‌طور غیرمستقیم تأیید شده‌بود.[۴] پروژه‌هایی همچون لایگو و پروژهٔ لیسایِ ناسا با هدف مشاهدهٔ مستقیم این امواج گرانشی راه‌اندازی شده‌اند. افزون بر این، نسبیت عام پایهٔ مدل‌های رایج کنونی کیهان‌شناسی، که برمبنای جهانِ در حال انبساط هستند، را تشکیل می‌دهد.

    برخی از پیش‌بینی‌های نسبیت عام به میزان قابل‌توجهی با پیش‌بینی‌های فیزیک کلاسیک تفاوت دارند؛ به‌ویژه آن‌هایی که مرتبط با گذر زمان، هندسهٔ فضا، حرکت اجسام در سقوط آزاد و انتشار نور هستند. پدیده‌هایی چون اتساع زمان گرانشی،انتقال به سرخ گرانشی نور و تأخیر زمانی گرانشی که ناشی از کندتر بودن گذر زمان در نزدیکی میدان‌های گرانشی قوی است، همگرایی گرانشی که به خمیده شدن نور در یک میدان گرانشی قوی اشاره دارد و حرکت تقدیمی مدار سیاراتنمونه‌هایی از این تفاوت‌ها هستند. همچنین تعریف جرم در نسبیت عام به سادگی فیزیک کلاسیک و حتی نسبیت خاص نیست، در واقع در نسبیت عام نمی‌توان تعریفی کلی برای جرم یک سامانه ارائه داد و تعریف‌های گوناگونی همچون جرم اِی‌دی‌اِم، جرم کُمار و جرم بوندی پدید آمده‌اند.

    محدودیت سرعت اجسام مادی به سرعت نور در نسبیت عام، پیامدهایی درمورد ساختار سببی فضازمان دربردارد، زیرا تأثیر رویدادها و در نتیجه علّیت نیز محدود به سرعت نور می‌باشند. این محدودیت در نسبیت عام به تعریف افق‌ها می‌انجامد که مرزبندی‌هایی در فضازمان هستند. از جملهٔ افق‌ها می‌توان به افق ذره و افق رویداد اشاره کرد که به ترتیب برخی نواحی از گذشته و آینده را غیرقابل دسترسی می‌نمایند.

    یکی از ویژگی‌های ابهام‌آمیز نسبیت عام تکینگی‌ها هستند که در آن‌ها هندسهٔ فضازمان تعریف نشده‌است. برخی از پاسخ‌های معادلات میدان اینشتین، مانند پاسخ شوارتزشیلد و پاسخ کر تکینگی‌های آینده (تکینگی‌های سیاهچاله‌ها) و برخی دیگر مانند پاسخ فریدمان–لومتر–رابرتسون–واکر تکینگی‌های گذشته (تکینگی مهبانگ) را مشخص می‌کنند. ماهیت تکینگی‌ها همچنان در هالهٔ ابهام قرار دارد، هرچند که تلاش‌هایی در زمینه توصیف ساختار آن‌ها صورت گرفته‌است.

    پیش‌بینی‌های نسبیت عام در تمام مشاهدات و آزمایش‌هایی که تا به امروز انجام گرفته‌است، تأیید شده‌اند. نسبیت عام تنها نظریهٔ نسبیتی موجود برای گرانش نیست، بلکه ساده‌ترین نظریه‌ای است که با داده‌های تجربی همخوانی دارد. هرچند که پرسش‌هایی هستند که هنوز بی‌پاسخ مانده‌اند و شاید پایه‌ای‌ترین آن‌ها این باشد که چگونه می‌توان نسبیت عام را با قوانین فیزیک کوانتومی آشتی داد تا بتوان به نظریه‌ای کامل و خودسازگار برای گرانش کوانتومی دست یافت.

    تاریخچه[ویرایش]

    اندکی پس از انتشار نظریه نسبیت خاص در سال ۱۹۰۵، اینشتین در این اندیشه بود که چگونه می‌تواند گرانش را در چارچوب نسبیتی جدیدش جای دهد. در سال ۱۹۰۷ با شروع از یک آزمایش فکری شامل یک مشاهده‌گر در سقوط آزاد، جستجویی هشت ساله برای دستیابی به نظریه‌ای نسبیتی برای گرانش را آغاز کرد. پس از اشتباهات و انحرافات متعدد سرانجام کار او در قالب آنچه امروزه معادلات میدان اینشتین می‌خوانیم، حاصل داد و در نوامبر ۱۹۱۵ به آکادمی علوم پروشن ارائه شد. این معادلات بیان می‌کنند که چگونه هندسهٔ فضا و زمان از کل ماده و تابش موجود تأثیر می‌پذیرد و هسته نسبیت عام اینشتین را تشکیل می‌دهند.[۵]

    معادلات میدان اینشتین غیرخطی هستند و از این رو یافتن پاسخ برای آن‌ها بسیار دشوار است. در حل مسائل مربوط به اولین پیش‌بینی‌های نظریه اش، اینشتین از روش‌های تقریبی استفاده نمود. اما دیری نپایید که در سال ۱۹۱۶ اخترفیزیکدانی به نام کارل شوارتزشیلد نخستین پاسخ غیربدیهی برای معادلات اینشتین را پیدا کرد که با نام متریک شوارتزشیلد شناخته می‌شود. این پاسخ امکان توصیف مراحل نهایی رمبش گرانشی و تشکیل اجسامی که امروزه به نام سیاهچاله می‌شناسیم، را فراهم نمود. در همان سال نخستین گام‌ها برای تعمیم پاسخ شوارتزشیلد به اجسام باردار آغاز شد. نتیجه این تلاش‌ها متریک رایسنر–نوردشتروم بود که امروزه با سیاهچاله‌های دارای بار الکتریکی مرتبط است.[۶] در سال ۱۹۱۷ اینشتین نظریه‌اش را درمورد جهان به‌عنوان یک کل به کارگرفت و شاخه کیهان‌شناسی نسبیتی را پایه‌گذاری نمود. در آن زمان اینشتین در راستای اندیشهٔ غالب عصر خود جهان را ایستا می‌پنداشت و به همین دلیل پارامتر جدیدی– ثابت کیهانی – را به معادلات اولیهٔ خود افزود تا بتواند آن مشاهده را در نظریه‌اش تکرار نماید.[۷] اما تا سال ۱۹۲۹ در نتیجهٔ کار هابل و سایرین مشخص شده بود که جهان ما در حال انبساط است. انبساط جهان به خوبی توسط بسط جواب‌های کیهانی که توسط الکساندر فریدمان در سال ۱۹۲۲ ارائه شد و نیازی به ثابت کیهانی ندارند، قابل توضیح است. با استفاده از این جوابها لومتر اولین نسخه از نظریه مهبانگ را فرمول‌بندی کرد که در آن جهان از یک حالت بی‌نهایت داغ و چگال اولیه بوجود آمده‌است.[۸] بعدها اینشتین ثابت کیهانی را بزرگترین اشتباه زندگی خود خواند.[۹]

    در خلال آن دوران، نسبیت عام کنجکاوی بسیاری از فیزیک‌دانان نظری را برانگیخته بود. این نظریه به وضوح از گرانش نیوتن برتر بود زیرا با نسبیت خاص سازگار بود و از عهده توضیح بسیاری از پدیده‌هایی برمی‌آمد که نظریه نیوتنی از توضیح آن‌ها ناتوان بود. خود اینشتین در سال ۱۹۱۵ نشان داد که چگونه نظریه‌اش حرکت تقدیمی غیرعادی حضیض خورشیدی سیاره تیر را بدون استفاده از هیچ‌گونه پارامتر اختیاری توجیه می‌کند.[۱۰] به‌طور مشابهی در سال ۱۹۱۹، طی اکتشافی که توسط ادینگتون صورت گرفت، پیش‌بینی نسبیت عام درمورد انحراف نور ستاره‌ها در طی خورشیدگرفتگی ۲۹ مه ۱۹۱۹، تأیید گردید.[۱۱] و باعث شهرت فوری اینشتین شد.[۱۲] اما تنها با گسترش‌هایی که بین سالهای ۱۹۶۰ تا ۱۹۷۵ صورت گرفت این نظریه وارد جریان اصلی فیزیک نظری و اخترفیزیک شد و از این رو، این دوره را عصر طلایی نسبیت عام می‌خوانند.[۱۳] به تدریج فیزیکدانان مفهوم سیاهچاله را درک نمودند و اختروش‌ها را به‌عنوان نمونه‌ای از تجلی اخترفیزیکی این مفهوم شناسایی کردند.[۱۴] آزمایش‌هایی دقیق‌تر از همیشه بر روی منظومه شمسی قدرت پیش‌بینی نظریه را تأیید کردند[notes ۱] و گرایش‌هایی برای استفاده از کیهان‌شناسی نسبیتی برای هدایت آزمایش‌های مشاهده‌ای به‌وجود آمد.[notes ۲]

    از مکانیک کلاسیک تا نسبیت عام[ویرایش]

    نسبیت عام را می‌توان با بررسی شباهت‌ها و تفاوت‌هایش با فیزیک کلاسیک درک نمود. نخستین گام این است که متوجه شویم که مکانیک کلاسیک و قانون گرانش نیوتن به‌طور ضمنی یک توصیف هندسی را می‌پذیرند. با ترکیب این توصیف با قوانین نسبیت خاص به نسبیت عام می‌رسیم.[notes ۳]

    هندسه گرانش نیوتنی[ویرایش]

     
    بنا بر نسبیت عام، اجسام در یک میدان گرانشی همانند اجسام در یک محفظه بسته شتاب‌دار رفتار می‌کنند. مثلاً اگر شتاب موشک به اندازه‌ای باشد که همان نیروی نسبی گرانش زمین را داشته باشد، افتادن یک توپ در درون یک موشک (چپ) همانند افتادن یک توپ در نقطه‌ای روی زمین (راست) خواهد بود.

    بنیان فیزیک کلاسیک بر این مفهوم استوار است که حرکت یک جسم را می‌توان ترکیبی از حرکت آزاد جسم (یا حرکت لخت) و انحراف‌هایی از این حرکت لخت دانست. این انحراف‌ها ناشی از نیروهای خارجی است که بر جسم وارد می‌شوند و بر طبققانون حرکت دوم نیوتن عمل می‌کنند. قانون دوم نیوتن بیان می‌کند که نیروی خالص وارد بر یک جسم برابر با جرم (لختی) آن ضرب در شتاب جسم است.[۱۵] نوع حرکت لخت جسم با هندسه فضا و زمان مرتبط است: در چارچوب‌های مرجع استاندارد فیزیک کلاسیک حرکت لَخت اجسام در خط مستقیم و با سرعت ثابت انجام می‌شود. در ادبیات فیزیک مدرن مسیرهای حرکت لَخت اجسام ژئودزیک نامیده می‌شوند که تعمیمی از مفهوم خط راست در هندسهٔ فیزیک کلاسیک هستند، جهان‌خط‌هایمستقیم در فضازمان خمیده.[۱۶]

    در روندی معکوس ممکن است این انتظار وجود داشته باشد که با مشخص کردن حرکت لخت اجسام از طریق مشاهدهٔ حرکت واقعی و حذف انحراف‌های مربوط به نیروهای خارجی (مانند الکترومغناطیس و اصطکاک)، می‌توان هندسهٔ فضا و همچنین مختصات زمان را تعریف کرد، اما وقتی پای گرانش به میان می‌آید این موضوع کمی ابهام‌آمیز می‌شود. بر طبق قانون گرانش نیوتن و تأیید آزمایش‌های مستقلی مانند آزمایش لورند اوتوو و سایرین، سقوط آزاد جهان‌شمول است (این قانون همچنین با نام اصل ضعیف هم‌ارزی یا قانون جهانی برابری جرم لختی و جرم غیرفعال گرانشی شناخته می‌شود): مسیر حرکت ذره آزمون در سقوط آزاد تنها به مکان و سرعت اولیه اش بستگی دارد و به هیچ‌یک از ویژگی‌های مادی‌اش وابسته نیست.[۱۷] نسخه‌ای ساده شده از این مفهوم را می‌توان در آزمایش آسانسور انیشتین یافت که در تصویر سمت چپ دیده می‌شود: ناظری که در یک اتاق بسته کوچک قرار گرفته غیرممکن است که تنها با بررسی مسیر سقوط آزاد جسمی مانند یک توپ بتواند بفهمد که آیا محفظه، در حال سکون و در یک میدان گرانشی قرار دارد یا اینکه در فضای آزاد سوار بر موشکی شتاب‌دار است که نیرویی به اندازه گرانش ایجاد می‌کند.[۱۸]

    با توجه به جهان‌شمول بودن گرانش، تمایز قابل مشاهده‌ای بین حرکت لخت و حرکت ناشی از نیروی گرانشی وجود ندارد. این موضوع ما را بر آن می‌دارد که کلاس جدیدی از حرکت لخت برای اجسام در حال سقوط آزاد تحت تأثیر نیروی گرانش تعریف کنیم. این کلاس جدید نیز، به نوبه خود، هندسه‌ای از فضا و زمان به زبان ریاضی تعریف می‌کند که عبارت است از حرکت ژئودزیک متناظر با یک اتصال خاص که به گرادیان پتانسیل گرانشی بستگی دارد. در اینجا فضا هنوز هندسه اقلیدسی معمولی دارد. اما فضا–زمان، به‌عنوان یک کل، پیچیده‌تر است. همان‌طور که می‌توان با آزمایش‌های فکری ساده درمورد مسیرهای سقوط آزاد ذرات آزمون مختلف نشان داد، نتیجه جابجایی بردارهای فضازمان که بیانگر سرعت ذره هستند به مسیر ذره بستگی دارد؛ به زبان ریاضی، می‌توان گفت که اتصال نیوتنی انتگرال‌پذیر نیست. از این می‌توان نتیجه گرفت که فضا–زمان خمیده است. نتیجه، یک فرمول‌بندی هندسی از گرانش نیوتنی تنها با استفاده از مفاهیم هموردا است؛ یعنی توصیفی که در هر دستگاه مختصاتی معتبر است.[۱۹] در این توصیف هندسی اثرات کشندی – شتاب نسبی اجسام در سقوط آزاد – با مشتق اتصال مرتبط است که نشان می‌دهد چگونه تغییر شکل هندسی، برآمده از وجود جرم است.[۲۰]

    تعمیم نسبیتی[ویرایش]

    بیان هندسی گرانش نیوتنی هرچند هم که جذاب باشد، اساس آن مکانیک کلاسیک، یعنی تنها حالتی حدی از مکانیک نسبیتی است.[notes ۴] به زبان تقارن: در جایی‌که بتوان گرانش را نادیده گرفت فیزیک دارای ناوردایی لورنتز است، مانند نسبیت خاص در مقایسه با مکانیک کلاسیک که دارای ناوردایی گالیله‌ای است (تقارن تعریف‌شده در نسبیت خاص گروه پوانکاره است که انتقال و چرخش را نیز شامل می‌شود). تفاوت این دو هنگامی اهمیت می‌یابد که با سرعت‌های بالا و نزدیک به سرعت نور و پدیده‌های پرانرژی سروکار داریم.[notes ۵]

    ساختارهای دیگری نیز با تقارن لورنتز به میان می‌آیند. این ساختارها توسط تعدادی مخروط نور تعریف می‌گردند. مخروط‌های نور ساختاری علیتی را تعریف می‌کنند: به ازای هر رویداد A، مجموعه‌ای از رویدادها وجود دارند که می‌توانند از طریق سیگنال‌ها و برهم‌کنش‌هایی که نیاز به سرعت بیشتر از نور ندارند، روی A تأثیر گذاشته یا از آن تأثیر بگیرند (مانند B) و مجموعه رویدادهایی که این نوع برهم‌کنش با A (با سرعت پایین‌تر از سرعت نور) برایشان امکان‌پذیر نیست (مانند C). این مجموعه‌ها مستقل از ناظر هستند.[۲۱] در ارتباط با جهان‌خط‌های ذرات در حال سقوط آزاد، مخروط‌های نوری را می‌توان برای بازسازی متریک شبه‌ریمانی فضازمان استفاده نمود. به زبان ریاضی این یک ساختار همدیس است.[۲۲]

    نسبیت خاص در غیاب گرانش تعریف می‌شود و به همین دلیل در کاربردهایی عملی در مواردی که بتوان گرانش را نادیده گرفت، مدل مناسبی خواهد بود. با ورود گرانش به صحنه و با فرض اصل هم‌ارزی ضعیف، می‌توان استدلالی مانند بخش پیشین ارائه داد:چارچوب مرجع لَخت جهانی وجود ندارد. به جای آن چارچوب‌های تقریباً لختی وجود دارند که در راستای ذرات در حال سقوط آزاد حرکت می‌کنند. به زبان فضازمان: خطوط زمان‌واره مستقیمی که یک چارچوب لخت بدون گرانش را تعریف می‌کنند، تغییر شکل داده و نسبت به یکدیگر خمیدگی پیدا می‌کنند و ما را به سوی این پندار رهنمون می‌سازد که افزودن گرانش نیاز به تغییر در هندسه فضازمان دارد.[۲۳]

    از پیش مشخص نیست که این چارچوب‌های جدید در حال سقوط آزاد همان چارچوب‌های مرجعی باشند که نسبیت خاص در آن‌ها حکم‌فرماست. اما با استفاده از پنداشت‌های متفاوت درمورد چارچوب‌های نسبیت خاص می‌توان به پیش‌بینی‌های متفاوتی درمورد پدیده انتقال به سرخ گرانشی، یعنی چگونگی تغییر بسامد نور در میدان گرانشی رسید. اندازه‌گیری‌های واقعی نشان داده‌اند که نور در چارچوب‌های در حال سقوط آزاد نیز مانند چارچوب‌های نسبیت خاص منتشر می‌گردد.[۲۴] تعمیم این عبارت اصل هم‌ارزیخوانده می‌شود: قوانین نسبیت خاص با تقریب خوبی در چارچوب‌های مرجع در حال سقوط آزاد (غیرچرخان) برقرارند. این اصل یک اصل هدایت‌گر مهم برای گسترش نسبیت خاص با در نظرگرفتن گرانش است.[۲۵]

    همین داده‌های تجربی گواهی می‌دهند که زمانی که توسط ساعت‌های قرار گرفته در یک میدان گرانشی اندازه‌گیری می‌شود – اصطلاح تخصصی آن زمان ویژه است –، از قوانین نسبیت خاص پیروی نمی‌کند یا به بیان هندسه فضازمان، با متریک مینکوفسکیقابل اندازه‌گیری نمی‌باشند. همان‌گونه که درمورد مکانیک نیوتنی اتفاق افتاد در اینجا نیز نیازمنده هندسه کلی‌تری هستیم. در مقیاس‌های کوچک، تمام چارچوب‌های مرجع درحال سقوط آزاد هم‌ارز و تقریباً مینکوفسکی وار هستند. متعاقباً ما با تعمیمی خمیده از فضای مینکوفسکی روبه‌رو هستیم. تانسور متریک که هندسه را تعریف می‌کند – به بیان دقیق‌تر چگونگی اندازه‌گیری طول‌ها و زاویه ها–، متریک مینکوفسکی نسبیت خاص نیست؛ بلکه تعمیم یافته آن است که به نام متریک شبه–ریمانی شناخته می‌شود. همچنین هر متریک ریمانی به‌طور طبیعی با یک نوع خاص اتصال به نام اتصال لوی–چیویتا مرتبط است و این اتصال در واقع اتصالی است که اصل هم‌ارزی را ارضا کرده و فضا را به‌طور محلی، مینکوفسکی وار می‌سازد (یعنی در چارچوب‌های محلی لخت مناسب، متریک، مینکوفسکی وار است و مشتقات جزئی مرتبه اول آن و نیز ضرایب اتصال صفر هستند).[۲۶]

    معادلات میدان اینشتین[ویرایش]

    با وجود فرمول‌بندی نسخه نسبیتی و هندسی آثار گرانش، پرسش دربارهٔ سرچشمه گرانش همچنان پابرجاست. در گرانش نیوتنی سرچشمه گرانش، جرم است. در نسبیت خاص، جرم پاره‌ای از کمیتی بزرگتر به نام تانسور انرژی–تکانه است که شامل چگالی‌های انرژی و تکانه و تنش (که عبارت است از فشار و برش) می‌شود.[۲۷] با استفاده از اصل هم‌ارزی می‌توان این تانسور را به فضازمان خمیده تعمیم داد. چنانچه با گرانش هندسی نیوتنی مقایسه کنیم، طبیعی خواهد بود که بپنداریم معادله میدان گرانش، این تانسور را به تانسور ریچی مرتبط سازد. تانسور ریچی رده ویژه‌ای ازاثرات کشندی را توصیف می‌کند: تغییر در حجم ابرهای کوچکی از ذرات آزمون که ابتدا ساکن هستند و سپس سقوط آزاد می‌کنند. در نسبیت خاص پایستگی انرژی–تکانه متناظر با این عبارت است که تانسور انرژی–تکانه بدون واگرایی است. این فرمول را نیز می‌توان با جایگزینی مشتقات پاره‌ای باخَمینه‌های همتایشان یعنی مشتقات هَموَردای هندسه دیفرانسیل، به سادگی به فضازمان خمیده تعمیم داد. با این شرط اضافی – واگرایی هموردای تانسور انرژی–تکانه صفر است و در نتیجه هرآنچه در سوی دیگر معادله است نیز صفر خواهد شد – ساده‌ترین مجموعه معادلات، معادلاتی هستند که به نام معادلات میدان انیشتین خوانده می‌شوند.

    {\displaystyle R_{ab}-{\textstyle 1 \over 2}R\,g_{ab}={8\pi G \over c^{4}}T_{ab}.\,}R_{{ab}}-{\textstyle 1 \over 2}R\,g_{{ab}}={8\pi G \over c^{4}}T_{{ab}}.\,

    عبارت سمت چپ تانسور اینشتین است، ترکیب ویژه بدون واگرایی از تانسور ریچی {\displaystyle R_{ab}}R_{{ab}} و متریک. به‌طور خاص:

    {\displaystyle R=R_{cd}g^{cd}\,}R=R_{{cd}}g^{{cd}}\,

    خمش نرده‌ای است. خود تانسور ریچی نیز با تانسور کلی‌تر خمش ریمان به شکل زیر در ارتباط است

    {\displaystyle \quad R_{ab}={R^{d}}_{adb}.\,}\quad R_{{ab}}={R^{d}}_{{adb}}.\,

    در سمت راست Tab تانسور انرژی–تکانه است. تمام تانسورها در شکل نمادگذاری نمایه انتزاعی نوشته شده‌اند.[۲۸] برای اینکه پیش‌بینی‌های نظریه با نتایج تجربی مشاهدات مدارهای سیاره‌ها، سازگار باشند، ثابت تناسب را می‌توان به شکل κ = ۸πG/c۴ اصلاح نمود که درآن G ثابت گرانش و cسرعت نور است.[۲۹] هرگاه هیچ ماده‌ای موجود نباشد، به گونه‌ای که تانسور انرژی تکانه ناپدید گردد، معادلات خلاء انیشتین به دست می‌آیند:

    {\displaystyle R_{ab}=0.\,}R_{{ab}}=0.\,

    نظریه‌های جایگزینی برای نسبیت عام بر پایه پندارهای یکسان شکل گرفته‌اند. این نظریه‌ها شامل قوانین و محدودیت‌های اضافی‌ای هستند که باعث به‌وجود آمدن شکل‌های دیگری از معادلات میدان می‌شوند. برای نمونه می‌توان به نظریه برانس دیکی، دورهمسانی یا نظریه اینشتین–کارتاناشاره کرد.[۳۰]

    تعریف و کاربردهای پایه‌ای[ویرایش]

    نتیجه‌گیری‌های بخش قبلی همه اطلاعات لازم برای تعریف و توصیف ویژگی‌های کلیدی نسبیت عام را شامل می‌شود و اکنون می‌توان به سراغ چگونگی استفاده از این نظریه برای مدل‌سازی پدیده‌های فیزیکی رفت.

    تعریف و ویژگی‌های پایه‌ای[ویرایش]

    نظریهٔ نسبیت، یک نظریه متریک برای گرانش است. در هستهٔ این نظریه معادلات اینشتین قرار می‌گیرند که رابطهٔ بین هندسهٔ یک خَمینهٔ شبه‌ریمانی چهاربعدی به‌عنوان فضازمان و انرژی–تکانه موجود در آن فضازمان را توصیف می‌کنند.[۳۱]

    پدیده‌هایی که در مکانیک کلاسیک به عملکرد نیروی گرانش تعبیر می‌شوند (مانند سقوط آزاد، حرکت مداری، مسیر حرکت فضاپیما)، در نسبیت عام به حرکت‌های لخت در هندسه خمیدهٔ فضازمان نسبت داده می‌شوند. در نسبیت عام، گرانش نیرویی نیست که اجسام را از مسیر مستقیم طبیعی‌شان منحرف می‌کند، بلکه تغییری در ویژگی‌های فضا و زمان است که باعث تغییر مستقیم‌ترین مسیرهایی که اجسام به‌طور طبیعی انتخاب می‌کنند می‌شود.[notes ۶] خمش به نوبه خود توسط انرژی–تکانه ماده به‌وجود می‌آید. جان ویلر این موضوع را این گونه بیان می‌کند که فضازمان به ماده می‌گوید که چه‌طور حرکت کند و ماده نیز به فضازمان می‌گوید که چگونه خمیده شود.[۳۲]

    با وجود اینکه نسبیت عام، پتانسیل گرانشی نرده‌ای فیزیک کلاسیک را با یک تانسور مرتبه دو جایگزین می‌کند، در برخی شرایط محدودتر، تانسور به میدان نرده‌ای کاهش می‌یابد. برای میدان‌های گرانشی ضعیف و سرعت‌های پایین (نسبت به سرعت نور)، پیش‌بینی‌های این نظریه به پیش‌بینی‌های قانون جهانی گرانش نیوتن همگرا می‌شوند.[۳۳]

    از آنجایی‌که نسبیت عام برپایه تانسورها بنا شده‌است، هموردایی عام را به نمایش می‌گذارد: یعنی قوانین آن – و دیگر قوانینی که در چارچوب نسبیت عام فرمول‌بندی می‌شوند – در همه دستگاه‌های مختصات یک شکل خواهند داشت.[۳۴] علاوه براین، نظریه شامل هیچ ساختار پس زمینه‌ای هندسی ناوردایی نیست، یعنی مستقل از پس زمینه است. از این رو از اصل قوی تری به نام اصل نسبیت عام پیروی می‌نماید؛ این اصل بیان می‌کند که قوانین فیزیکی برای همه ناظرها یکسان هستند.[notes ۷] درمورد ساختارهای محلی، همان‌گونه که در اصل هم‌ارزی اشاره شد، فضازمانمینکوفسکی وار است و قوانین فیزیکی دارای ناوردایی محلی لورنتس هستند.[۳۵]

    مدل‌سازی[ویرایش]

    هدف اصلی در مدل‌سازی با استفاده از نسبیت عام، یافتن پاسخی برای معادلات میدان اینشتین می‌باشد. با داشتن معادلات اینشتین و همچنین معادلات مناسب دیگر برای توصیف ویژگی‌های ماده، پاسخ معادلات یک خمینه شبه ریمانی (که معمولاً با استفاده از یک متریک در یک مختصات خاص تعریف می‌شود) به همراه میدان‌های ماده‌ی خاصی روی آن خمینه خواهد بود. ماده و هندسه باید در معادلات انیشتین صدق کنند، پس به‌طور خاص تانسور انرژی–تکانه باید بدون واگرایی باشد. البته ماده باید در معادلات دیگری که از طریق ویژگی‌هایش تحمیل می‌شوند نیز صدق کند. در مجموع چنین پاسخی برای این معادلات در حقیقت مدلی از جهان را نمایش خواهد داد که نسبیت عام و قوانین محتمل دیگری که بر ماده موجود حاکمند را ارضا می‌نماید.[۳۶]

    معادلات اینشتین معادلات دیفرانسیل غیرخطی با مشتقات پاره‌ای هستند و به همین سبب یافتن پاسخ دقیق برای این معادلات دشوار است.[notes ۸] با این حال چند پاسخ دقیق برای این معادلات پیدا شده‌است؛ اگر چه که تنها برخی از این پاسخ‌ها کاربرد مستقیم فیزیکی دارند.[notes ۹] بهترین پاسخ‌های دقیق کشف شده که از دیدگاه فیزیکی نیز جالب‌ترند، عبارتند از: پاسخ شوارتزشیلد، پاسخ رایسنر–نوردشتروم و متریک کِر که هرکدام با یک نوع خاص سیاه‌چاله در جهانی که تنها شامل این سیاه‌چاله است، در تناظر هستند،[۳۷] و متریک فریدمان–لومتر–رابرتسون–واکر و جهان دو سیترکه هر دو جهان در حال انبساط را توصیف می‌کنند.[۳۸] پاسخ‌هایی که اهمیت نظری دارند عبارتند از متریک گودل (که احتمال سفر در زمان در فضازمان خمیده را مطرح می‌کند)، پاسخ تاب–نات (مدلی از جهان که همگن است اما همسانگرد نیست) و فضای پاد–دوسیتر (که به تازگی در زمینه حدس مالداسنا مورد توجه قرار گرفته‌است).[notes ۱۰]

    به دلیل دشواری یافتن پاسخ‌های دقیق، معادلات میدان اینشتین را اغلب با استفاده از انتگرال‌گیری عددی به کمک رایانه یا با استفاده از روش‌های اختلالی با ایجاد انحرافات کوچک از جواب اصلی حل می‌کنند. در شاخه «نسبیت عددی»، رایانه‌های توانمندی به خدمت گرفته می‌شوند تا معادلات اینشتین را برای شرایط خاصی مثل برخورد سیاه‌چاله‌ها حل کنند.[۳۹] در اصل، چنین روش‌هایی را با در دست داشتن توان پردازشی کافی می‌توان برای هر سامانه‌ای به‌کار برد و به دنبال پاسخ برای پرسش‌هایی بنیادی همچون تکینگی‌های برهنه بود. جواب‌های تقریبی را همچنین می‌توان از طریق نظریه‌های اختلال یافت، مانند گرانش خطی‌شده[۴۰] و تعمیم آن، بسط پسانیوتنی که هردو توسط اینشتین به‌وجود آمده‌اند. بسط پسانیوتنی روش حلی سیستماتیک برای فضازمانی ارائه می‌کند که شامل توزیعی از ماده در حال حرکت با سرعتی کم نسبت به سرعت نور می‌باشد. این بسط شامل یک سری از جملات است که جمله اول نماینده گرانش نیوتنی است و جمله‌های بعدی نماینده اصلاحاتی هستند که به واسطه نسبیت عام بر گرانش نیوتنی وارد می‌شوند که مقدارشان در جملات متوالی کاهش می‌یابد.[۴۱] نسخه گسترش‌یافته این بسط، صورت‌گرایی پسا-نیوتنی پارامتری است که امکان مقایسه کمّی بین پیش‌بینی‌های نسبیت عام و نظریه‌های جایگزین را به‌وجود می‌آورد.[۴۲]

    پیامدهای نظریه اینشتین[ویرایش]

    نسبیت عام پیامدهای فیزیکی چندی را به دنبال دارد. برخی از آن‌ها مستقیماً از اصول نظریه ناشی می‌شوند در حالیکه سایر آن‌ها تنها در طول نود سال پژوهشی که به دنبال انتشار نخستین نظریه توسط اینشتین آغاز شد، مشخص گشته‌اند.

    اتساع زمان گرانشی و انتقال بسامد[ویرایش]

     
    نمایش شماتیک انتقال به سرخ یک موج نور که از سطح یک جسم بسیار پرجرم می‌گریزد.

    بافرض درستی اصل هم‌ارزی،[۴۳] گرانش بر گذر زمان اثر می‌گذارد. نوری که به درون یک چاه گرانش فرستاده می‌شود، منتقل به آبی می‌گردد. در حالی‌که نوری که در جهت مخالف فرستاده می‌شود؛ یعنی از چاه گرانش بالا می‌آید منتقل به سرخمی‌گردد. این پدیده‌ها را انتقال بسامد گرانشی می‌نامند. به‌طور کلی، فرایندهایی که در نزدیکی یک جسم پرجرم صورت می‌گیرند کندتر از فرایندهایی که در فواصل دورتر قرار دارند پیش می‌روند. این پدیده را اتساع زمان گرانشی می‌گویند.[۴۴]

    انتقال به سرخ گرانشی در آزمایشگاه[notes ۱۱] و با بهره‌گیری از مشاهدات اخترفیزیکی[۴۵] اندازه‌گیری شده‌است. اتساع زمان گرانشی در میدان گرانشی زمین دفعات زیادی با بهره‌گیری از ساعت‌های اتمی بررسی شده‌است.[notes ۱۲] و به‌عنوان کاربردی جانبی برای پروژهٔ سامانه موقعیت‌یاب جهانی (GPS) این نتایج پیوسته در حال ارزیابی هستند.[۴۶] آزمونی در میدان گرانشی قوی‌تر را می‌توان با استفاده از مشاهدات تپ‌اخترهای دوتایی انجام داد.[۴۷] تمام نتایج با نسبیت عام همخوانی دارند[notes ۱۳] اما در سطح دقت کنونی این آزمایش‌ها نمی‌توانند بین نسبیت عام و سایر نظریه‌هایی که در آن‌ها اصل هم‌ارزی معتبر است تمایزی قائل شوند.[۴۸]

    شکست نور و تأخیر زمانی گرانشی[ویرایش]

     
    شکست نور (فرستاده شده از مکان آبی رنگ) نزدیک یک جسم فشرده (به رنگ خاکستری)

    نسبیت عام پیش‌بینی می‌کند که مسیر نور در میدان گرانشی خم می‌شود. نوری که از نزدیکی یک جسم پرجرم می‌گذرد به سوی آن جسم خمیده می‌شود. این اثر با مشاهده نور ستارگان دور و اختروش‌ها که با گذر از کنار خورشید خمیده می‌شود، تأیید شده‌است.[notes ۱۴]

    این پیش‌بینی و پیش‌بینی‌های مرتبط از این واقعیت پیروی می‌کنند که نور مسیری را که به آن نورواره (نور–مانند) یا ژئودزیک پوچ (که تعمیمی بر خطوط مستقیمی در فیزیک کلاسیک هستند که نور در راستای آن‌ها منتشر می‌شود) می‌گویند، دنبال می‌کند. چنان ژئودزیک‌هایی در واقع تعمیم ناوردایی سرعت نور در نسبیت خاص هستند.[notes ۱۵] چنانچه مدل‌های فضازمان را بررسی کنیم (چه مدل خارجی جواب شوارتزشیلد، چه مدلهایی که بیش از یک جرم دارند مثل بسط پسانیوتنی)[۴۹] آثار متعددی از گرانش بر نور جلوه خواهند نمود. اگرچه می‌توان خمش نور را از تعمیم جهانشمول بودن سقوط آزاد به نور نتیجه گرفت،[۵۰] زاویه شکستی که از نتیجه چنین محاسباتی به دست می‌آید تنها نیمی از مقداری است که از نسبیت عام به دست می‌آید.[۵۱]

    تأخیر زمانی گرانشی (یا تأخیر شاپیرو) ارتباط تنگاتنگی با شکست گرانشی نور دارد. تأخیر زمانی گرانشی به پدیده‌ای اشاره دارد که طی آن گذر نور در یک میدان گرانشی مدت زمان بیشتری از گذر نور در غیاب آن میدان به طول می‌انجامد. آزمون‌های موفق بی‌شماری برای این پیش‌بینی انجام شده‌اند.[notes ۱۶] در صورت‌گرایی پارامتری پسانیوتنی (PPN)، اندازه‌گیری هر دو پدیده شکست نور و تأخیر زمانی گرانشی پارامتری به نام γ را مشخص می‌سازد، که تأثیر گرانش بر هندسه فضازمان در آن به رمز درآمده‌است.[۵۲]

    امواج گرانشی[ویرایش]

     
    حلقه ذرات آزمون تحت تأثیر گرانش

    یکی از تشابه‌های متعدد میدان گرانشی ضعیف و میدان الکترومغناطیس این است که همانند امواج الکترومغناطیسی، امواج گرانشی نیز وجود دارند: امواجی در متریک فضازمان که با سرعت نور منتشر می‌شوند.[notes ۱۷] ساده‌ترین نوع چنین موجی را می‌توان با عمل آن بر روی حلقه‌ای از ذرات که آزادانه شناورند نمایش داد. موج سینوسی که از درون چنین حلقه‌ای به سمت خواننده منتشر می‌شود به صورت ریتمیک حلقه را دچار اعوجاج می‌نماید (شکل سمت چپ را ببینید).[notes ۱۸] از آنجا که معادلات اینشتین غیرخطی هستند، امواج گرانشی که به اندازه کافی قوی باشند، از اصل برهم‌نهی پیروی نمی‌کند و این باعث دشواری توصیف آن‌ها می‌شود؛ درحالیکه برای میدان‌های ضعیف می‌توان از یک تقریب خطی استفاده نمود. این‌گونه امواج گرانشی خطی شده از دقت کافی برای توصیف امواج گرانشی بسیار ضعیفی را که انتظار می‌رود از رویدادهای کیهانی بسیار دور به ما برسد، برخوردار هستند. در روش‌های تحلیل داده‌های مربوط به این امواج، استفاده‌های فراوانی از این واقعیت می‌شود که می‌توان امواج گرانشی خطی شده را با استفاده از سری فوریه بسط داد.[۵۳]

    برخی از پاسخ‌های دقیق معادلات اینشتین امواج گرانشی را بدون هیچ تقریبی توصیف می‌کنند، مثلاً قطار موجی که در فضای خالی سفر می‌کند[۵۴] یا آنچه به نام جهانهای گودی شناخته می‌شود که نسخه‌های مختلفی از یک کیهان در حال انبساط پر شده با امواج گرانشی است.[۵۵] اما برای امواج گرانشی که در موارد مربوط به اخترفیزیک، مانند ادغام دو سیاه‌چاله تولید می‌شوند، تنها راه ساخت مدل‌های مناسب در حال حاضر روشهای عددی هستند.[۵۶]

    تأثیرات مداری و نسبیت جهت[ویرایش]

    نسبیت عام و مکانیک کلاسیک در شماری از پیش بینی‌هایشان درمورد اجسام در حرکت مداری، با یکدیگر تفاوت دارند. نسبیت عام یک چرخش کلی (حرکت تقدیمی) مدار سیارات، کاهش یافتن مدار در نتیجهٔ منتشر کردن امواج گرانشی و نیز آثار مربوط به نسبیت جهت را درمورد این مدارها پیش‌بینی می‌کند.

    حرکت تقدیمی نقاط حضیض[ویرایش]

     
    مدار نیوتنی (قرمز) در مقابل مدار اینشتینی (آبی) یک سیاره تنها که به دور ستاره‌ای می‌گردد

    در نسبیت عام، نقطه حضیض هر مدار (یعنی نقطه‌ای که در آن، جسم در حرکت مداری نزدیکترین فاصله را با گرانیگاه سامانه دارد) حرکتی تقدیمی خواهد داشت – همان‌طور که در شکل مشخص است، شکل مدار بیضی نیست بلکه شبیه به بیضی است که روی کانونش می‌چرخد و یک منحنی رز پدیدمی‌آورد –. اینشتین برای نخستین بار این نتیجه را با استفاده از یک متریک تقریبی به‌عنوان نمایندهٔ حد نیوتنی و یک ذره آزمون به‌عنوان جسم در حرکت مداری استنتاج نمود. برای او دانستن این واقعیت که نظریه‌اش توضیح مستقیمی دربارهٔ حرکت تقدیمی حضیض خورشیدی سیاره تیر – که در سال ۱۸۵۹ توسط اوربن لاوریه کشف شده بود – ارائه می‌کند، گواه مهمی بود بر اینکه او شکل درستی از معادلات میدان گرانشی را یافته‌است.[۵۷]

    این اثر را می‌توان با استفاده از متریک دقیق شوارتزشیلد (که فضازمان اطراف یک جسم کروی را توصیف می‌کند).[۵۸] یا صورت‌گرایی پسا–نیوتنی نیز استنتاج نمود.[۵۹] این پدیده ناشی از تأثیر گرانش بر هندسه فضا و نقش خود–انرژی در گرانش یک جسم (که نمود آن را در غیرخطی بودن معادلات انیشتین می‌توان دید) می‌باشد.[notes ۱۹] حرکت تقدیمی نسبیتی برای تمام سیاراتی که می‌توان در آن‌ها به دقت حرکت تقدیمی را اندازه گرفت(تیر، ناهید و زمین)، مشاهده شده‌اند.[notes ۲۰] حرکت تقدیمی در تپ‌اخترهای دوتایی نیز اندازه‌گیری شده‌است که مقدار آن به اندازه پنج مرتبه بزرگی بیشتر است.[۶۰]

    افت مداری[ویرایش]

     
    افت مداری برای پی‌اس‌آر بی۱۹۱۳+۱۶: تغییر زمان برحسب ثانیه که در طول سه دهه ردگیری شده‌است.[notes ۲۱]

    بنابر نظریه نسبیت عام یک منظومه دوتایی امواج گرانشی منتشر می‌کند و از این رو انرژی از دست خواهد داد. در نتیجه این کاهش انرژی فاصله بین دو جسم در حال چرخش کاهش می‌یابد؛ و بنابراین دوره تناوب چرخش آن‌ها نیز کاهش می‌یابد. در درون منظومه شمسی یا برای جفت ستاره‌های معمولی این اثر آنقدر کوچک است که قابل مشاهده نیست. اما برای یک تپ‌اختر دوتایی که در فاصله نزدیکی قرار دارد، وضعیت این‌گونه نیست. یک تپ‌اختر دوتایی از دو ستاره نوترونی در حرکت مداری هستند تشکیل شده‌است که یکی از آن‌ها تپ‌اختر است. ناظرین روی زمین، سری منظمی از پالس‌های رادیویی از یک تپ‌اختر دریافت می‌کنند که می‌توان از آن‌ها به‌عنوان یک ساعت بسیار دقیق استفاده نمود و بدین وسیله دورهٔ تناوب مداری را اندازه گرفت. از آنجا که ستاره‌های نوترونی بسیار فشرده هستند انرژی قابل توجهی از آن‌ها به‌صورت تابش گرانشی منتشر می‌شود.[۶۱]

    اولین مشاهده کاهش در دوره تناوب مداری بر اثر انتشار امواج گرانشی توسط هالس و تیلور، با استفاده از تپ‌اختر دوتایی پی‌اس‌آر بی۱۹۱۳+۱۶ که در سال ۱۹۷۴ کشف کرده بودند، انجام شد. این نخستین آشکارسازی امواج گرانشی بود که البته غیرمستقیم بود. آن‌ها به خاطر این مشاهده در سال ۱۹۹۳ موفق به کسب جایزه نوبل فیزیک شدند.[۶۲] ازآن زمان به بعد تپ‌اخترهای دوتایی متعددی مانند پی‌اس‌آر جی۰۷۳۷–۳۰۳۹ کشف شده‌اند که در ان هر دو ستاره تپ‌اختر هستند.[۶۳]

    حرکت تقدیمی ژئودتیک و کشش چارچوب[ویرایش]

    شماری از آثار نسبیتی مستقیماً به نسبیت جهت مربوط می‌شوند.[۶۴] یکی از آن‌ها حرکت تقدیمی ژئودتیک است: محور جهت یک ژیروسکوپ در حال سقوط آزاد در فضازمان خمیده، وقتی که مثلاً با جهت نور دریافت شده از ستاره‌های دوردست مقایسه می‌شود تغییر می‌کند–حتی با اینکه در اینجا ژیروسکوپ در واقع به‌عنوان نمایندهٔ روشی برای ثابت نگه‌داشتن جهت (انتقال موازی) درنظر گرفته شده‌است.[۶۵] برای سیستم ماهزمین، این اثر با کمک محدوده بندی لیزری قمری اندازه‌گیری شده‌است.[۶۶] به تازگی برای جرم‌های آزمون سوار بر ماهواره حسگر گرانش بی با دقتی بهتر از۰٫۳٪ اندازه‌گیری شده‌است.[۶۷][notes ۲۲]

    در نزدیکی یک جسم چرخنده آثاری که به نام گرانش مغناطیسی یا کشش چارچوب نامیده می‌شوند، وجود دارند. یک ناظر دور خواهد دید که اجسام نزدیک به جرم چرخنده کشیده می‌شوند. این اثر درمورد سیاهچاله‌های چرخان پررنگ‌تر است، زیرا در آن‌ها برای هر جسمی که وارد ناحیه‌ای به نام ارگوسفر می‌شود، چرخش اجتناب‌ناپذیر است.[۶۸] چنین آثاری را می‌توان با تأثیرشان بر جهت‌گیری ژیروسکوپ در حال سقوط، آزمود.[۶۹] آزمونهای تاحدودی بحث‌انگیز نیز توسط ماهواره‌های ژئودینامیک لیزری نیز پیش‌بینی‌های نسبیت را تأیید می‌کنند.[۷۰] همچنین کاوش‌های نقشه‌بردار سراسر مریخ در اطراف مریخ نیز مورد استفاده قرارگرفته‌اند.[۷۱][۷۲]

    کاربردهای اخترفیزیکی[ویرایش]

    همگرایی گرانشی[ویرایش]

     
    صلیب اینشتین: چهار تصویر از یک جسم نجومی که بر اثر همگرایی گرانشیبوجود آمده‌اند.

    شکست نور توسط گرانش مسبب رده جدیدی از پدیده‌های اخترفیزیکی است. اگر یک جسم پرجرم بین اخترشناس و یک شی هدف در دوردست با جرم و فاصله نسبی مناسب قرار گیرد، اخترشناس چندین تصویر معوج از آن را می‌بیند. چنین آثاری را همگرایی گرانشی می‌خوانند.[notes ۲۳] بسته به پیکربندی، مقیاس و توزیع جرم، ممکن است دو تصویر یا بیشتر، یک حلقه روشن به نام حلقه اینشتین یا چندین حلقه جزئی به نام کمان دیده شوند.[notes ۲۴] اولین نمونه همگرایی گرانشی اختروش دوقلو بود که در سال ۱۹۷۹ کشف شد.[۷۳] از آن پس بیش از صد مورد همگرایی گرانشی مشاهده شده‌است.[notes ۲۵] حتی اگر تصاویر ایجاد شده آنقدر به هم نزدیک باشند که قابل تشخیص نباشند نیز می‌توان این تأثیر را اندازه گرفت، مثلاً روشن شدن کلی جسم دور؛ چندین نمونه از این ریزهمگرایی‌های گرانشی نیز مشاهده شده‌اند.[۷۴]

    همگرایی گرانشی به صورت ابزاری برای ستاره‌شناسی رصدی درآمده‌است. از همگرایی گرانشی در آشکارسازی حضور و توزیع ماده تاریک، به‌عنوان «تلسکوپ طبیعی» برای مشاهدهٔ کهکشانهای دور و به‌دست‌آوردن تخمین مستقلی از ثابت هابلاستفاده می‌کنند. ارزیابی آماری داده‌های همگرایی، بینش‌های ارزشمندی درمورد تکامل ساختاری کهکشانها عرضه می‌دارد.[۷۵]

    اخترشناسی امواج گرانشی[ویرایش]

     
    تصویر هنری از آشکارساز موج گرانشی فضایی لیسا

    مشاهدات تپ‌اخترهای دوتایی شواهد غیرمستقیم محکمی برای وجود امواج گرانشی به دست می‌دهند. مشاهدهٔ مستقیم امواج گرانشی یکی از اهداف اصلی پژوهش‌های نسبیتی کنونی است.[۷۶] تعداد زیادی از آشکارسازهای موج گرانشی واقع بر روی زمین، هم‌اکنون در حال کار هستند که مهم‌ترین آن‌ها آشکارسازهای تداخل سنجی ژئو۶۰۰، لیگو (۳ آشکارساز)، تاما ۳۰۰ و ویرگو هستند.[۷۷] آرایه‌های زمان‌سنجی تپ‌اختر مختلفی با بهره‌گیری از تپ‌اخترهای میلی‌ثانیه‌ای برای آشکارسازی امواج گرانشی در طیف −۹۱۰ تا ۱۰−۶ هرتز (که از سیاهچاله‌های پرجرم دوتایی سرچشمه می‌گیرند) ساخته شده‌اند.[۷۸] آشکارساز فضایی اروپایی، الیسا / ان جی اُ هم‌اکنون در حال ساخت است[۷۹] و یک مأموریت آزمایشی (رهیاب لیسا) برای این پروژه نیز قرار است در سال ۲۰۱۵ به فضا پرتاب شود.[۸۰]

    مشاهدهٔ امواج گرانشی در سال ۲۰۱۶[ویرایش]

    در ۱۱ فوریه ۲۰۱۶ پژوهشگران در LIGO موفق به مشاهده مستقیم امواج گرانشی برای نخستین بار شدند.[۳] موج مشاهده شده ناشی از ترکیب دو سیاه‌چاله با جرم‌های تقریبی ۳۶ و ۲۹ برابر جرم خورشید، و در فاصلهٔ تقریبی ۴۱۰ مگاپارسک (حدود ۱/۳ میلیارد سال نوری) از زمین بود.[۲] موج گرانشی ناشی از تبدیل جرمی معادل با سه برابر جرم خورشید به انرژی در هنگام ترکیب دو سیاه‌چاله با یکدیگر بود. این اولین مشاهده از ترکیب دو سیاه‌چاله با یکدیگر نیز به حساب می‌آید.

    مشاهدات امواج گرانشی نویدبخش تکمیل مشاهدات مربوط به طیف الکترومغناطیسی هستند.[۸۱] انتظار می‌رود این مشاهدات بتوانند درمورد سیاهچاله‌ها و سایر اجسام چگال مانند ستاره‌های نوترونی و کوتوله‌های سفید، انواع خاصی از انفجارهایاَبَرنواختری و همچنین فرایندهایی در جهان بسیار جوان اولیه مانند امضاهای انواع خاصی از رشته‌های کیهانی فرضی، اطلاعاتی به ما بدهند.[۸۲]

    سیاهچاله‌ها و سایر اجسام پرجرم[ویرایش]

    هرگاه نسبت جرم یک جسم به شعاعش به اندازه کافی بزرگ شود، بنا بر پیش‌بینی نسبیت عام، یک سیاهچاله تشکیل می‌شود. منطقه‌ای از فضا که هیچ چیز، حتی نور نمی‌تواند ازآن بگریزد. در مدل‌های پذیرفته‌شدهٔ کنونی تکامل ستارگان، گمان می‌رود که حالت پایانی تکامل ستارگان بزرگ، ستاره‌های نوترونی با جرمی در حدود ۱٫۴ جرم خورشیدی یا سیاهچاله‌های ستاره‌ای با جرمی بین چند تا چند دوجین جرم خورشیدی هستند.[۸۳] معمولاً هر کهکشان در مرکز خود یک سیاهچاله پرجرم با جرمی از چندمیلیون تا چند میلیارد جرم خورشیدی دارد[۸۴] و گمان می‌رود که حضور آن‌ها نقش مهمی در شکل‌گیری کهکشانها و ساختارهای کیهانی بزرگ‌تر داشته‌است.[۸۵]

     
    شبیه‌سازی برپایه معادلات نسبیت عام: یک ستاره در حالی که امواج گرانشی منتشر می‌کند فرو می‌ریزد (رمبش گرانشی) و به سیاهچاله تبدیل می‌شود

    از دید اخترشناسی مهم‌ترین ویژگی اجسام فشرده این است که مکانیزم بسیار کارایی برای تبدیل انرژی گرانشی به تابش الکترومغناطیسی ارائه می‌دهند.[۸۶] گمان می‌رود که برافزایش ماده، یعنی افتادن غبار یا مواد گازی به درون سیاهچاله‌های ستاره‌ای یا سیاهچاله‌های پرجرم؛ مسبب پیدایش اجسام فوق‌العاده درخشنده نجومی مانند هسته‌های کهکشانی فعال در مقیاس کهکشانی و اجسام در مقیاس ستاره‌ای مانندریزاختروش‌ها، هستند.[۸۷] به‌طور خاص، برافزایش ماده می‌تواند منجر به پیدایش پدیده فواره‌های نسبیتی شود؛ پرتوهای بسیار پرانرژی از ذرات با سرعت‌هایی تقریباً برابر با سرعت نور به فضا پرتاب می‌شوند.[۸۸]نسبیت عام نقشی محوری در مدلسازی این پدیده‌ها دارد[۸۹] و مشاهدات تجربی نیز مدارک مستحکمی برای وجود سیاهچاله‌ها با خصوصیات پیش‌بینی شده در نسبیت عام، ارائه می‌کنند.[۹۰]

    سیاهچاله‌ها یکی از اهدافی هستند که در کنکاش برای آشکارسازی امواج گرانشی مورد جستجو قرار می‌گیرند. ادغام سیاهچاله‌های دوتایی می‌بایست منجر به تولید امواج گرانشی بسیار قوی شود که توسط آشکارسازها در زمین قابل دریافت باشند و از فازی که دقیقاً پیش از ادغام رخ می‌دهد نیز می‌توان به‌عنوان یک شمع استاندارد استفاده نمود تا فاصله با محل رویداد ادغام به‌دست آید و بدین ترتیب می‌توان انبساط کیهانی را در فواصل بزرگ سنجید.[۹۱] امواج گرانشی تولید شده در هنگام فرورفتن یک سیاهچاله ستاره‌ای در یک سیاهچالهٔ پرجرم، می‌توانند اطلاعات مستقیمی دربارهٔ هندسهٔ سیاهچاله‌های پرجرم ارائه دهند.[۹۲]

    کیهان‌شناسی[ویرایش]

     
    این نعل اسب آبی رنگ، یک کهکشان دور است که توسط کشش گرانشی بسیار قوی کهکشان قرمز درخشان زمینه بزرگ‌نمایی شده و به صورت یک حلقه تقریباً کامل درآمده‌است.

    مدل‌های کنونی کیهان‌شناسی برپایهٔ آن دسته از معادلات میدان اینشتین که شامل ثابت کیهانی Λ هستند، بنا می‌شوند؛ زیرا ثابت کیهانی اثر مهمی در دینامیک بزرگ‌مقیاس کیهان دارد.

    {\displaystyle R_{ab}-{\textstyle 1 \over 2}R\,g_{ab}+\Lambda \ g_{ab}=\kappa \,T_{ab}}R_{{ab}}-{\textstyle 1 \over 2}R\,g_{{ab}}+\Lambda \ g_{{ab}}=\kappa \,T_{{ab}}

    که در آن gab متریک فضازمان است.[۹۳] پاسخ‌های همگن و همسانگرد این معادلات بهبودیافته (متریک فریدمان–لومتر–رابرتسون–واکر) به فیزیکدان‌ها اجازه می‌دهد که جهانی را مدل کنند که در طول ۱۴ میلیارد سال گذشته از یک حالت بسیار داغ و چگال اولیه طی مرحله مهبانگ پدید آمده و تکامل یافته‌است.[۹۴] هرگاه اندکی از پارامترها را (مثلاً میانگین چگالی ماده در جهان) با استفاده از داده‌های مشاهدات اخترشناسی[notes ۲۶] ثابت نگه داریم، می‌توان از دیگر داده‌های مشاهداتی برای آزمودن مدل‌ها بهره بجوییم.[notes ۲۷] پیش‌بینی‌هایی که همه درست از آب درآمده‌اند عبارتند از: فراوانی اولیه عناصر شیمیایی که در جریان هسته زایی نخستین به‌وجود آمده‌اند،[۹۵] ساختار بزرگ‌مقیاس جهان[۹۶] و وجود ویژگی‌های یک «اکوی گرمایی» از کیهان اولیه به نام تابش زمینه کیهانی.[۹۷]

    مشاهدات نجومی مربوط به نرخ انبساط کیهانی اجازه می‌دهند که کل مقدار ماده موجود در جهان را به دست آوریم، البته ماهیت این ماده تا حدودی اسرارآمیز است. به نظر می‌رسد که در حدود ۹۰٪ از کل ماده، از آنچه ماده تاریک خوانده می‌شود تشکیل شده‌است که جرم (یا هم ارز آن، تأثیر گرانشی) دارد اما برهمکنش الکترومغناطیسی ندارد و از این روی نمی‌توان آن را مستقیماً مشاهده نمود.[notes ۲۸] در چارچوب فیزیک ذرات یا هرشاخه دیگری، هیچ توصیفی از این نوع جدید ماده که مورد پذیرش عموم باشد، وجود ندارد.[۹۸][notes ۲۹] علاوه بر این، شواهد تجربی از انتقال به سرخ‌های ابرنواخترهای دوردست و اندازه‌گیری‌های تابش زمینه کیهانی نشان می‌دهند که تکامل جهان ما به میزان قابل توجهی متأثر از یک ثابت کیهانی است که باعث شتاب‌دار بودن انبساط کیهان می‌شود. ویا به‌طور معادل می‌توان گفت که تکامل جهان متأثر از شکلی از انرژی با معادله حالت غیرمعمول به نام انرژی تاریک است که ماهیت آن نامعلوم است.[۹۹]

    در سال ۱۹۸۰ فرضیه‌ای به نام تورم کیهانی مطرح گردید که یک دوره انبساط بسیار پرشتاب در زمان کیهانی حدود {\displaystyle 10^{-33}}10^{{-33}} ثانیه را برای جهان در نظر می‌گرفت.[۱۰۰] این فرضیه به این دلیل ارائه شد که توجیه‌کننده بسیاری از مشاهدات گیج‌کننده‌ای باشد که توسط مدل‌های کیهان‌شناسی کلاسیک قابل توضیح نبودند؛ مانند همگنی کامل تابش زمینه کیهانی.[notes ۳۰] اندازه‌گیری‌های جدید تابش زمینه کیهانی اولین مدرک برای این سناریو است.[۱۰۱] هرچند که تعداد بسیار متنوعی از سناریوهای تورمی ممکن موجود است که نمی‌توان بر مبنای مشاهدات کنونی آن‌ها را محدود نمود.[۱۰۲] فیزیک جهان اولیه پیش از فاز تورمی و نزدیک به زمانی که بنا بر پیش‌بینی‌های مدل‌های کلاسیک، در آن با تکینگی گرانشی مهبانگ روبه رو می‌شویم، خود پرسش بزرگتری است. یافتن یک جواب قطعی در گرو وجود یک نظریه کامل گرانش کوانتومیاست که هنوز ایجاد نشده‌است.[۱۰۳]

    مفاهیم پیشرفته[ویرایش]

    ساختار سببی و هندسه سراسری[ویرایش]

     
    دیاگرام پنروز–کارتر جهان مینکوفسکیبی‌نهایت.

    در نسبیت عام هیچ جسم مادی نمی‌تواند به سرعت نور برسد یا از آن پیشی بگیرد. از طرفی هیچ تأثیری از رویداد A نمی‌تواند به هیچ مکان X دیگری برسد، مگر آنکه قبلاً نوری از A به X رفته باشد. در نتیجه این امر، بررسی جهان‌خط‌های نور (ژئودزیک‌های پوچ) اطلاعات کلیدی را درمورد ساختار سببی فضازمان در اختیارمان قرار می‌دهد. این ساختار را با نمودارهای پنروز–کارتر نمایش می‌دهند که در آن نواحی بینهایت بزرگ و بازه‌های زمانی بینهایت فشرده می‌شوند تا در یک نقشه متناهی جای گیرند. اما نور همانند نمودارهای استاندارد فضازمان، در راستای قطرها حرکت می‌کند.[۱۰۴]

    با آگاهی از اهمیت ساختار سببی، راجر پنروز و دیگران آنچه را که امروز هندسه سراسری خوانده می‌شود بنا نهادند. در هندسه سراسری موضوع مطالعه یک پاسخ یا خانواده‌ای از پاسخ‌ها برای معادلات اینشتین نیست بلکه یافتن روابطی است که برای تمام ژئودزیک‌ها صادق اند، مانند معادله ریچادوری؛ و فرضیات غیر مشخص اضافی دربارهٔ ماهیت ماده (معمولاً در شکل آنچه شرایط انرژی خوانده می‌شود) برای تولید نتایج مورد استفاده قرار می‌گیرند.[۱۰۵]

    افق‌ها[ویرایش]

    با استفاده از هندسه سراسری می‌توان نشان داد که برخی از فضازمانها شامل افق هستند که یک ناحیه را از بقیه فضازمان جدا می‌کند. بهترین مثال شناخته شده سیاهچاله‌ها هستند: اگر جرم در ناحیه‌ای از فضا به اندازه کافی فشرده شود (آن گونه که در حدس حلقه مشخص شده‌است، مقیاس طول مرتبط، شعاع شوارتزشیلد است[۱۰۶]) هیچ نوری از داخل نمی‌تواند به بیرون بگریزد و چون هیچ جسمی نمی‌تواند از یک پالس نوری سبقت بگیرد تمام ماده داخل افق نیز در آن محبوس‌اند. گذر از بیرون به درون هنوز امکانپذیر است که نشان می‌دهد افق سیاهچاله یک مانع فیزیکی نیست.[۱۰۷]

    مطالعات اولیه در زمینه سیاهچاله‌ها بر پاسخهای کامل معادلات اینشتین تکیه داشتند. مثلاً می‌توان به پاسخ متقارن کروی شوارتزشیلد (برای توصیف یک سیاهچاله ایستا) و پاسخ متقارن محوری کر (برای توصیف سیاهچاله‌های ثابت چرخان و معرفی ویژگی‌های جالبی مانند کارکره) اشاره نمود. مطالعات بعدی با بهره‌گیری از هندسه سراسری، ویژگی‌های عمومی تری از سیاهچاله‌ها را آشکار ساخت. در دراز مدت آن‌ها اجسام نسبتاً ساده‌ای هستند که می‌توان آن‌ها را با یازده پارامتر که مشخص‌کننده انرژی، تکانه خطی، تکانه زاویه‌ای، مکان در زمان مشخص شده و بار الکتریکی هستند تعریف می‌گردند. نظریه بدون مو بیان می‌کند که «سیاهچاله‌ها مو ندارند»، این عبارت کنایه از این دارد که یک سیاهچاله هیچ علامت مشخصه‌ای مانند مدل مو در انسان ندارد. با وجود پیچیدگی رمبش گرانشی یک جسم که منجر به تشکیل سیاهچاله می‌شود، سیاهچاله ایجاد شده جسم بسیار ساده‌ای است.[۱۰۸]

    مجموعه عمومی از قوانین به نام مکانیک سیاهچاله‌ها موجودند که مشابه قوانین ترمودینامیک هستند. مثلاً بنا بر قانون دوم مکانیک سیاهچاله‌ها، مساحت افق رویداد هرگز با زمان کاهش نمی‌یابد که قابل مقایسه با آنتروپی یک سیستم ترمودینامیکی است. این موضوع میزان انرژی را که می‌توان با روش‌های کلاسیک از یک سیاهچاله چرخان استخراج نمود (مثلاً از راه فرایند پنروز) محدود می‌سازد.[۱۰۹] شواهد قوی در دسترس است که قوانین مکانیک سیاهچاله‌ها در حقیقت زیرمجموعه‌ای از قوانین ترمودینامیک هستند و مساحت سیاهچاله با آنتروپی اش مرتبط است.[۱۱۰] این منجر به تغییراتی در قوانین اصلی مکانیک سیاهچاله‌ها می‌شود: مثلاً چنان‌که قانون دوم مکانیک سیاهچاله‌ها بخشی از قانون دوم ترمودینامیک می‌شود، مساحت سیاهچاله می‌تواند کاهش یابد به شرط آنکه فرایندهای دیگری اطمینان حاصل کنند که آنتروپی کل افزایش می‌یابد. مانند تمام اجسام ترمودینامیکی که دمای غیر صفر دارند، سیاهچاله‌ها نیز باید تابش گرمایی داشته باشند. محاسبات نیمه‌کلاسیک نشان می‌دهند که در حقیقت سیاهچاله‌ها تابش دارند و گرانش سطحی نقش دما را در قانون پلانک به عهده دارد. این تابش را به نام تابش هاوکینگ می‌خوانند.[۱۱۱]

    انواع دیگری از افق‌ها نیز موجودند. در یک جهان در حال انبساط یک ناظر ممکن است نواحی از گذشته را غیرقابل مشاهده بیابد ("افق ذره")، و همچنین بعضی از نواحی آینده را نیز نمی‌توان تحت تأثیر قرارداد (افق رویداد)[۱۱۲] حتی در فضای تخت مینکوفسکی، وقتی که از دید ناظر شتابداری توصیف شود (فضای ریندلر)، افقهایی وجود خواهند داشت که با یک تابش نیمه‌کلاسیک به نام تابش اونروه مرتبط‌اند.[۱۱۳]

    تکینگی‌ها[ویرایش]

    یکی از ویژگی‌های عمومی نسبیت عام پیدایش مرزهایی در فضازمان به نام تکینگی است. فضازمان را می‌توان با دنبال کردن ژئودزیک‌های زمان‌واره و نورواره اکتشاف کرد– تمام مسیرهای ممکن که نور و ذرات در سقوط آزاد می‌توانند بپیمایند. اما برخی از پاسخهای معادلات اینشتین "لبه‌های پاره‌پاره" دارند – نواحی‌ای که به نام تکینگی‌های فضازمان شناخته می‌شوند و در آن‌ها مسیرهای نور و ذرات در حال سقوط به‌طور ناگهانی به پایان می‌رسد و هندسه تعریف نشده‌است. در موارد جالبتر این تکینگی‌ها، "تکینگی‌های خمش" هستند که در آن‌ها کمیتهای هندسی که ویژگی‌های خمش فضازمان را توصیف می‌کنند (مانند کمیت نرده‌ای ریچی) مقدار بی‌نهایت می‌گیرند.[۱۱۴] مثال‌های شناخته شده از فضازمان‌های دارای تکینگی آینده – که در آن جهان‌خط‌ها به پایان می‌رسند – عبارتند از پاسخ شوارتزشیلد که یک تکینگی را در درون یک سیاهچاله ایستا توصیف می‌کند،[۱۱۵]یا پاسخ کِر که یک تکینگی حلقوی را در درون یک سیاهچاله چرخان توصیف می‌کند.[۱۱۶] پاسخ فریدمان–لومتر–رابرتسون–واکر و سایر فضازمان‌هایی که جهان‌ها را توصیف می‌کنند، تکینگی‌های گذشته دارند که در آن‌ها جهان‌خط‌ها آغاز می‌شوند مانند تکینگی مه بانگ. برخی تکینگی‌های آینده نیز دارند (مانند مه‌رمب).[۱۱۷]

    با دانستن اینکه این مثال‌ها همه بسیار متقارن هستند کاملاً وسوسه‌برانگیز است که نتیجه بگیریم که تکینگی مصنوع ایده‌آل گرایی است، اما نظریه‌های مشهور تکینگی که با استفاده از روش‌های هندسه سراسری ثابت می‌شوند نظر دیگری دارند: تکینگی‌ها ویژگی عمومی نسبیت عام هستند و در مواردی که رمبش اجسام با ویژگی‌های مادی واقعی از حدی فراتر رود[۱۱۸] و یا در ابتدای بسیاری از جهان‌های در حال انبساط[۱۱۹] اجتناب‌ناپذیر هستند. اما این نظریه‌ها چیز زیادی درمورد ویژگی تکینگی‌ها بیان نمی‌کنند و بسیاری از پژوهش‌های کنونی به مشخص کردن ساختار عمومی تکینگی‌ها اختصاص یافته‌است (مانند فرضیه تکینگی بی کی ال)[۱۲۰] فرضیه سانسور کیهانی بیان می‌کند که تکینگی‌های آینده پشت یک افق پنهان شده‌اند و از دیدرس ناظر دوردست مخفی هستند. در حالی‌که هیچ اثبات رسمی برای آن اعلام نشده‌است شبیه‌سازی‌های عددی پیشنهاد بر درستی آن می‌دهند.[۱۲۱]

    معادلات تکامل[ویرایش]

    هر پاسخ به معادلات اینشتین دربرگیرنده تاریخ کامل یک جهان است و حالت ماده و هندسه را در هر جایی و هر زمانی در آن جهان توصیف می‌کند. نظریه اینشتین به دلیل هموردایی عام آن، به تنهایی برای مشخص کردن تکامل زمانی تانسور متریک کافی نیست بلکه باید با یک شرط مختصات (که قابل مقایسه با تثبیت پیمانه در سایر نظریه‌های میدان است) ترکیب شود.[۱۲۲]

    برای کمک در فهمیدن معادلات اینشتین به‌عنوان معادلات دیفرانسیل پاره‌های می‌توان آن‌ها را به گونه‌ای فرمول‌بندی کرد که تکامل جهان در طول زمان را نشان دهند. این کار را به روش فرمول‌بندی که به نام "۳+۱" شناخته می‌شود انجام می‌دهند که در آن سه بُعد فضا و یک بُعد زمان وجود دارد. بهترین مثال شناخته‌شده صورت‌گرایی ای دی ام است.[۱۲۳] این تجزیه‌ها نشان می‌دهد که معادلات تکامل فضازمان در نسبیت عام به درستی رفتار می‌کنند: پاسخ‌ها همواره موجودند و اگر شرایط اولیه مشخص شوند به گونه منحصربه فردی تعریف می‌شوند.[۱۲۴] این‌طور فرمول‌بندی‌های معادلات اینشتین اساس نسبیت عددی را تشکیل می‌دهند.[۱۲۵]

    کمیت‌های شبه محلی و سراسری[ویرایش]

    مفهوم معادلات تکامل با یکی دیگر از جنبه‌های نسبیت عام گره خورده است. در نظریه اینشتین مشخص می‌گردد که غیرممکن است که بتوان یک تعریف عمومی برای ویژگی ظاهراً ساده‌ای مانند جرم (انرژی) کل یک سیستم ارائه داد. دلیل این امر آن است که میدان گرانشی – مانند هر میدان فیزیکی دیگری– باید به یک انرژی خاص نسبت داده شود اما ثابت شده که اساساً غیرممکن است که بتوان آن انرژی را محلی کرد.[۱۲۶]

    با این وجود هنوز راه‌هایی برای تعریف جرم کل یک سیستم وجود دارد، مثلاً از طریق یک ناظر فرضی بی‌نهایت دور (جرم ای دی ام) یا از طریق تقارن‌های مناسب (جرم کُمار).[۱۲۷] اگر انرژی که از طریق امواج گرانشی به بی‌نهایت منتقل می‌شود را از جرم کل سیستم کم کنیم، حاصل آن جرم بوندی در بی‌نهایت پوچ نامیده می‌شود.[۱۲۸] همانند فیزیک کلاسیک می‌توان نشان داد که این جرم‌ها مثبت هستند.[۱۲۹] تعاریف عمومی متناظری نیز برای تکانه و تکانه زاویه‌ای وجود دارند.[۱۳۰] همچنین تلاش‌هایی در زمینه تعریف کمیتهای شبه محلی صورت گرفته‌است، مثلاً جرم یک سیستم منزوی، تنها با استفاده از کمیتهایی که در یک ناحیه متناهی از فضای دربرگیرنده آن سیستم تعریف می‌شود، فرمول‌بندی می‌گردد. امید آن می‌رود که کمیتی به دست آید که برای بیان گزاره‌های عمومی درمورد سیستم‌های منزوی سودمند باشد، مانند یک فرمول‌بندی دقیقتر برای حدس حلقه[notes ۳۱]

    رابطه با نظریهٔ کوانتومی[ویرایش]

    اگر نسبیت عام را به‌عنوان یکی از دو ستون فیزیک نوین بدانیم، ستون دیگر نظریه کوانتومی است که پایهٔ فهمیدن ماده، از ذرات بنیادی تا فیزیک جامدات است.[notes ۳۲] اما اینکه چگونه می‌توان مفاهیم فیزیک کوانتومی را با نسبیت عام سازش داد، پرسشی است که هنوز بی پاسخ مانده‌است.

    نظریه میدان کوانتومی در فضازمان خمیده[ویرایش]

    نظریه‌های میدان‌های کوانتومی معمولی، که پایه فیزیک ذرات بنیادی مدرن را تشکیل می‌دهند همگی در فضای تخت مینکوفسکی تعریف می‌شوند که تقریب بسیار مناسبی برای موردی است که بخواهیم رفتار ذرات میکروسکوپی را در میدان‌های گرانش ضعیف مانند میدانهای موجود در روی زمین مطالعه کنیم.[۱۳۱] برای توصیف شرایطی که در آن گرانش به اندازه‌ای نیرومند هست که بر ماده تأثیر داشته باشد اما نه تا اندازه‌ای که خود نیاز به کوانتایی‌سازی داشته باشد، فیزیکدانان نظریه‌های میدان کوانتومی برای فضازمان خمیده را پیشنهاد داده‌اند. این نظریه‌ها با بهره‌گیری از نسبیت عام، یک فضای پس زمینه خمیده را توصیف می‌کنند و نظریه میدان کوانتومی تعمیم یافته‌ای را تعریف می‌کنند که رفتار ماده کوانتومی را در آن فضازمان بررسی می‌کند.[۱۳۲] با بهره‌گیری از این صورت‌گرایی[notes ۳۳] می‌توان نشان داد که سیاهچاله‌ها یک طیف جسم سیاه از ذرات منتشر می‌کنند کهتابش هاوکینگ نامیده می‌شود و به تبخیر سیاهچاله در گذر زمان می‌انجامد.[notes ۳۴] همان‌طور که به اختصار در بالا اشاره شد، این تبخیر نقش مهمی در ترمودینامیک سیاهچاله‌ها بازی می‌کند.[۱۳۳]

    گرانش کوانتومی[ویرایش]

    نیاز به سازگاری بین یک توصیف کوانتومی از ماده و یک توصیف هندسی از فضا،[notes ۳۵] و همچنین بروز تکینگی‌ها (در جاهایی که مقیاس طول خمش میکروسکوپیک می‌شود)، از جمله دلایل نیاز به وجود یک نظریه کامل گرانش کوانتومی هستند: برای توضیح کافی درمورد ساختار داخلی سیاه‌چاله‌ها و جهان بسیار جوان نخستین، یک نظریه مورد نیاز است که در آن گرانش و هندسه فضازمان مرتبط با آن به زبان فیزیک کوانتومی بیان گردند.[۱۳۴] با وجود تلاش‌های فراوان، هنوز هیچ نظریه کامل و سازگاری برای گرانش کوانتومی به دست نیامده است. اگرچه چند نامزد بالقوه برای چنین نظریه‌ای موجود است.[۱۳۵]

     
    تصویرسازی از یک خمینه کالابی–یائو، یکی از راه‌های فشرده‌سازی ابعاد اضافی که توسط نظریه ریسمان عرضه می‌شود.

    تلاش‌ها برای تعمیم نظریه‌های میدان کوانتومی معمولی – که برای توصیف برهمکنش‌های بنیادی در فیزیک بنیادی کاربرد دارند –، از طریق گنجاندن گرانش در این نظریه‌ها با مشکلات جدی روبه رو شده‌اند. در انرژی‌های پایین این دیدگاه موفق است و این نظریه‌ها در این شرایط نظریه‌های میدانی مؤثری برای گرانش هستند.[۱۳۶] اما در انرژی‌های بالا نتایج دست‌یافته، مدل‌هایی هستند که فاقد هرگونه قدرت پیش‌بینی می‌باشند("غیرقابل بازبه‌هنجارسازی").[notes ۳۶]

     
    گونه‌ای از شبکه اسپین ساده که در گرانش کوانتومی حلقه استفاده می‌شود.

    یکی از تلاش‌ها برای غلبه بر این محدودیت‌ها نظریه ریسمان است، یک نظریه کوانتومی که دربارهٔ ذرات نقطه‌ای نیست بلکه از اجسام یک بعدی دراز بسیار ریز سخن می‌گوید.[notes ۳۷] این نظریه نوید آن را می‌دهد که می‌تواند یک توصیف یکپارچه برای همه ذرات و برهمکنش‌ها (از جمله گرانش) باشد.[notes ۳۸] بهایی که باید در این راه پرداخت شود، پذیرش ویژگی‌های غیرمعمولی مانند شش بعد اضافی برای فضا در کنار سه بعد موجود است.[۱۳۷] درخلال دوران انقلاب دوم اَبَرریسمان گمان برآن رفت که نظریه ریسمان و یک نظریه دربارهٔ یکپارچه‌سازی نسبیت عام و اَبَرتقارن به نام اَبَرگرانش،[۱۳۸] هردو بخشی از یک مدل پیشنهادی یازده–بعدی به نام نظریه اِم هستند که سرانجام یک نظریه سازگار و از نظر تعریفی یکتا از گرانش کوانتومی را ارائه خواهد داد.[۱۳۹]

    دیدگاه دیگری نیز وجود دارد که از روش‌های کوانتیزه کردن کانونیک نظریه کوانتومی آغاز می‌شود. با استفاده از فرمول‌بندی مقدار اولیه نسبیت عام (به معادلات تکامل در بالا مراجعه کنید) معادله ویلر–دوگانگی(نظیر معادله شرودینگر) حاصل می‌شود که متأسفانه مشخص شده که به درستی تعریف نشده‌است.[۱۴۰] اما با معرفی آنچه امروز به نام متغیر اَشتِکار شناخته می‌شود،[۱۴۱] این معادله به مدلی نویدبخش به نام گرانش کوانتومی حلقه منجر می‌شود. فضا با ساختاری تارعنکبوت مانند به نام شبکه اسپین نمایش داده می‌شود که در گام‌های گسسته با گذر زمان تکامل می‌یابد.[۱۴۲]

    با اختلاف در اینکه کدام یک از ویژگی‌های نسبیت عام و نظریه کوانتومی بدون تغییر پذیرفته شوند و اینکه تغییرات در چه سطحی اعمال شوند، تلاش‌های متعدد مختلفی برای رسیدن که یک نظریه قابل قبول گرانش کوانتومی صورت گرفته‌اند که برخی نمونه‌های آن‌ها مثلثی‌سازی دینامیکی،[۱۴۳] مجموعه‌های سببی،[۱۴۴] مدلهای توئیستر[۱۴۵] یا مدل‌های کیهان‌شناسی‌های کوانتومی بر پایه انتگرال مسیرهستند.[۱۴۶]

    تمام نظریه‌های نامزد همچنان مشکلات صوری و مفهومی دارند که باید برآن فایق آیند. این نظریه‌ها از این مشکل عمومی نیز برخوردارند که هنوز هیچ راهی برای آزمودن پیش‌بینی‌های گرانش کوانتومی وجود ندارد، هرچند که امید است این امر با داده‌های آینده دربارهٔ مشاهدات کیهان‌شناسی و آزمایش‌های فیزیک ذرات میسر شود.[۱۴۷]

    وضعیت کنونی[ویرایش]

    نسبیت عام به‌عنوان نظریه‌ای بسیار موفق پدیدار شده و آزمون‌های مشخص آزمایشگاهی و مشاهدات بسیاری را پشت سر گذارده است، اما شواهد محکمی نیز حاکی از آنند که این نظریه کامل نیست.[۱۴۸] مسئله گرانش کوانتومی و واقعیت تکینگی‌های فضازمان هنوز بدون پاسخ مانده‌اند.[notes ۳۹] شواهدی درداده‌های مشاهداتی که به‌عنوان گواهی برای وجود انرژی تاریک و ماده تاریک در نظر گرفته می‌شوند ممکن است در حقیقت شواهدی برای نیاز به دانشی جدید در فیزیک باشند.[notes ۴۰] حتی اگر نسبیت را همان‌گونه که هست بپذیریم، این نظریه پر از احتمالات اکتشاف بیشتر است. پژوهشگران نسبیت ریاضیاتی در جستجوی فهم ماهیت تکینگی‌ها و ویژگی‌های اصلی معادلات اینشتین هستند.[۱۴۹] و شبیه‌سازی‌های رایانه‌ای با قدرت روزافزون (مانند آنهایی که ادغام سیاهچاله‌ها را شبیه‌سازی می‌کنند) در حال اجرا هستند.[۱۵۰] با مشاهدهٔ امواج گرانشی در سال ۲۰۱۶، تلاش‌ها برای مطالعهٔ کیهان به کمک امواج گرانشی شتاب گرفته‌است[notes ۴۱] ، تا امکان آزمودن نظریه در میدان‌های گرانشی بسیار قوی تر فراهم آید.[notes ۴۲] با وجود گذشت بیش از نود سال از انتشار، نسبیت عام هنوز به‌عنوان زمینه‌ای فعال در پژوهش به‌شمار می‌رود.[۱۵۱]

    نظریه نسبیت خاص انیشتین

    نسبیت خاص (به انگلیسی(SR)Special Relativityنظریه‌ای فیزیکی دربارهٔ اندازه‌گیری در چارچوب مرجع لخت است که در سال ۱۹۰۵ میلادی توسط آلبرت اینشتین در نوشتاری با نام «درباب الکترودینامیک اجسام متحرک» مطرح شد.[۱]

    گالیلئو گالیله قبلاً چنین اصلی را بیان نموده بود که تمام حرکات یکنواخت نسبی هستند و هیچ حالت سکون مطلق و تعریف شده‌ای وجود ندارد (چارچوب مرجع برتر وجود ندارد). این اصل امروزه اصل نسبیت گالیله خوانده می‌شود. انیشتین این اصل را با در نظرگرفتن پدیده سرعت ثابت نور گسترش داد؛ پدیده‌ای که به تازگی در آزمایش مایکلسون-مورلی مشاهده شده بود.[۲] او همچنین بیان نمود که این اصل برای تمام قوانین فیزیک صادق است که در آن زمان شامل قوانین مکانیک و الکترودینامیک می‌شد.[۳]این نظریه پیامدهای گسترده‌ای دارد که مورد تأیید داده‌های تجربی قرار گرفته‌اند[۴] و شامل موضوعاتی غیر شهودی همچون انقباض طول، اتساع زمان و نسبیت همزمانی است. او مفهوم کلاسیک بازه زمانی ناوردا برای دو رویداد را با مفهوم ناوردایی بازهفضازمان تعویض کرد. می‌توان با استفاده از دو اصل نسبیت خاص و ترکیب آن‌ها با سایر قوانین فیزیک به هم‌ارزی جرم و انرژی بر طبق اصل هم‌ارزی جرم و انرژی (E = mc۲) رسید که c در آن برابر با سرعت نور در خلأ است.[۵][۶] پیش بینی‌های نسبیت خاص با مکانیک نیوتنی در قلمرو مشترکشان همخوانی دارند. به ویژه در مورد سرعتهایی که از سرعت نور بسیار کوچکتر هستند. تأثیر نسبیت خاص هنگام بررسی اجسام در حال حرکت با سرعت‌های بسیار زیاد (نزدیک به سرعت نور) قابل توجه می‌شود. بنابراین نظریهٔ نسبیت همان‌طور که اصل همخوانی فیزیک ایجاب می‌کند باید نتایج مشاهدات قبلی را به شکل کامل تری بیان کند. مقایسه رابطه بین مکانیک نیوتنی و مکانیک نسبیتی همانند مقایسه بین تبدیلات لورنتس و تبدیلات گالیله است و می‌توان مطلب فوق را به بیان ریاضی به شکل زیر نمایش داد:

    ‎ {\displaystyle \lim _{c\to \infty }}\lim _{{c\to \infty }}(تبدیلات لورنتس) = (تبدیلات گالیله) ‎

    البته در نظر داشته باشید که هنگامی که c به سمت بی‌نهایت میل می‌کند (همانگونه که پیش از اثبات متناهی بودن سرعت نور پنداشته می‌شد) کسر v/c به سمت صفر می‌رود. این بدان معناست که تبدیلات لورنتس که اساس نظریهٔ نسبیت خاص هستند در سرعت‌های بسیار کم نسبت به نور، نتایج یکسانی را با معادلات گالیله که اساس نسبیت نیوتونی هستند به دست می‌دهند. نظریه نسبیت خاص به ما می‌گوید که c تنها سرعت یک پدیده مشخص نیست بلکه یکی از ویژگی‌های بنیادی شیوه‌ای است که فضا و زمان با یکدیگر به شکل فضا زمان یکپارچه گشته‌اند. یکی از پیامدهای این نظریه است که ذره‌ای که جرم لختی دارد هرگز سرعتش به سرعت نور نمی‌رسد.

    واژه خاص در نسبیت خاص نشانگر حالت خاصی است که این نظریه در آن صادق است. این نظریه اصل نسبیت را تنها در مورد ویژهٔ چارچوبهای مرجع لخت به کار برده است. به عبارت دیگر این‌طور پنداشته شده‌است که چارچوبهای مرجع نسبت به یکدیگر با سرعت یکنواختی حرکت می‌کنند.[۷] انیشتین نسبیت عام را معرفی نمود و اصل نسبیت را در حالت کلی تری به کارگرفت تا برای هر چارچوبی که قادر به تغییر مختصات عمومی است، صادق باشد. این نظریه تأثیرات گرانشی را هم در نظر می‌گیرد.

    این واژه امروزه کاربرد کلی تری پیدا کرده و برای ارجاع به هر موردی که در آن گرانش ناچیز است استفاده می‌شود. نسبیت عام تعمیمی بر نسبیت خاص است که گرانش را نادیده نمی‌گیرد. در نسبیت عام گرانش توسط هندسه نااقلیدسی توصیف می‌شود؛ به گونه‌ای که تأثیرات گرانشی با خمش فضازمان نمایش داده می‌شوند. نسبیت خاص تنها به فضاهای تخت محدود است. همانگونه که خمش زمین در زندگی روزمره ناچیز به نظر می‌رسد خمش فضازمان نیز در مقیاسهای کوچک قابل صرف نظر کردن است و بنا بر این به صورت محلی نسبیت خاص تقریب قابل قبولی از نسبیت عام است.[۸]

    اصول[ویرایش]

    بازتابهایی از این نوع برای من روشن ساخت که تا مدتی پس از سال ،۱۹۰۰ یعنی زمان کوتاهی بعد از کار پیشگامانه پلانک، نیز نه مکانیک و نه الکترودینامیک نمی‌توانستند ادعای درستی دقیق (به جز در موارد خاص) داشته باشند. به تدریج من از امکان یافتن قوانین واقعی با استفاده از تلاشهای سازنده برپایه حقایق دانسته شده ناامید شدم. هر چه بیشتر و از جان گذشته تر تلاش می‌نمودم بیشتر به این باور نزدیک می‌شدم که تنها کشف یک اصل رسمی جهانشمول می‌تواند مارا به نتایج مطمئنی برساند… چگونه می‌شد چنین اصلی یافت؟

    —آلبرت انیشتین: یادداشتهای اتوبیوگرافی [۹]

    انیشتین دو پنداشت پایه‌ای مطرح نمود که به نظر می‌رسید که بدون توجه به اعتبار قوانین شناخته شده - که در آن زمان یا مکانیکی یا الکترودینامیکی بودند - قابل اطمینان باشند. این پنداشت‌ها ثابت بودن سرعت نور و دیگری استقلال قوانین فیزیکی (مخصوصا ثابت بودن سرعت نور) از دستگاه لخت انتخاب شده بود. در اولین ارائه نسبیت خاص در سال ۱۹۰۵، وی این اصول را به صورت زیر مطرح نمود:[۱]

    • اصل نسبیت

    قوانین فیزیک در تمام چارچوب‌های لَخت یکسان هستند و هیچ چهارچوب لخت مرجعی وجود ندارد.

    این اصل که پیش از نسبیت خاص در نسبیت نیوتونی نیز بوده‌است بیان می‌کند که تمامی چهارچوب‌هایی که با سرعتی ثابت (بدون شتاب) حرکت می‌کنند هم ارز و یکسان هستند، بدین ترتیب هیچ چهارچوب لختی بر چهارچوب دیگر برتری یا با دیگری تفاوت ندارد.

    به سخنی دیگر اصل نسبیت (با در نظر گرفتن یک شرایط ایده‌آل) می‌گوید که اگر شما در آزمایشگاه سربسته‌ای قرار داشته باشید و آن آزمایشگاه با سرعت ثابتی نسبت به زمین حرکت کند، شما با هیچ روشی نمی‌توانید تعیین کنید که سرعت‌تان نسبت به زمین چقدر است. در این بیان از اصل نسبیت، فرض شده‌است که زمین یک چارچوب لخت است (این موضوع دربارهٔ زمین به تقریب صادق است)، همچنین فرض شده‌است که شما نسبت به زمین به نرمی حرکت می‌کنید و آزمایشگاه هیچ لرزش و تکانی ندارد.

    • اصل سرعت ثابت نور

    "نور همواره در فضای خالی با سرعت مشخص c منتشر می‌شود که مستقل از وضعیت حرکتی جسم منتشرکننده نور است " (از پیشگفتار)).[۱] این بدان معنی است که نور در خلأ، حداقل در یک دستگاه مختصات لخت (دستگاه ثابت) با سرعت c(مقداری ثابت که مستقل از جهت است) و بدون توجه به وضعیت حرکتی منبع نور منتشر می‌شود. سرعت نور در خلأ برای تمام ناظران لَخت ثابت و برابر c است و به حرکت چشمهٔ نور یا حرکت ناظر بستگی ندارد.

    به سخنی دیگر اگر شما سوار اتومبیلی باشید که با سرعت ۵۰ کیلومتر بر ساعت حرکت می‌کند و اتومبیل دیگری با سرعت ۲۰ کیلومتر بر ساعت به شما نزدیک شود، سرعت نسبی اتومبیل شما و اتومبیل مقابل تقریباً برابر با ۷۰ کیلومتر بر ساعت خواهد بود، اما بر طبق این اصل اگر چشمهٔ نوری با سرعت دلخواهی به شما نزدیک شود و شما هم با سرعت متفاوتی به سمت آن چشمه حرکت کنید باز هم سرعت نور شما همان c خواهد بود. چنین چیزی کاملاً مخالف شهود روزمرهٔ ماست.

    نسبیت خاص نه تنها بر این دو اصل آشکار بلکه بر چندین پنداشت ضمنی دیگر نیز وابسته است. از جمله این پنداشت‌ها می‌توان به همسانگردی و یکنواختی فضا و استقلال ساعت‌ها و میله‌های اندازه‌گیری از تاریخ گذشته‌شان اشاره نمود.[۱۰]

    به دنبال ارائه نخستین نسبیت خاص توسط انیشتین در سال ۱۹۰۵ مجموعه‌های متعددی از اصول پیشنهاد شده‌است.[۱۰] اما رایج‌ترین مجموعه اصول همچنان همان اصولی هستند که توسط انیشتین در مقاله اصلی منتشر شدند. یک نسخه ریاضی از اصل نسبیت که بعدها توسط انیشتین ارائه شد عبارت است از:

    اصل نسبیت خاص: اگر سیستم مختصات K برگزیده شود به گونه‌ای که در ارتباط با آن قوانین فیزیک در ساده‌ترین حالت خود به خوبی برقرار باشند، همان قوانین در ارتباط با هر دستگاه مختصات 'K دیگری نیز که در انتقال یکنواختی نسبت به K حرکت می‌کنند به خوبی صادق خواهند بود.[۱۱]

    آنری پوانکاره با اثبات اینکه تبدیلات لورنتس زیرمجموعه‌ای از گروه پوانکاره در تبدیلات تقارنی هستند، چارچوبی ریاضیاتی برای نظریه نسبیت ارائه داد. بعدها انیشتین این تبدیلات را از اصولی که ارائه داده بود استنتاج کرد.

    بسیاری از مقالات انیشتین مشتقاتی از تبدیلات لورنتس بر پایه این دو اصل را نمایش می‌دهند.[۱۲]

    انیشتین همواره استنتاج ناوردایی لورنتس (هسته اصلی نسبیت خاص) را تنها برپایه دو اصل نسبیت و ثابت بودن سرعت نور بنا نهاده است. او اینچنین می‌نویسد:

    بینش پایه‌ای در نظریه نسبیت خاص این است: پنداشتهای نسبیت و ناوردایی سرعت نور در صورتی سازگار هستند که اصولی که برای تغییر مختصاتها و زمان‌های رخدادها بنا می‌شوند روابطی از یک نوع جدید ("تبدیلات لورنتس") باشند… از اصل جهانی نظریه خاص نسبیت درون این اصل قرار دارد: قوانین فیزیک نسبت به تبدیلات لورنتس ناوردا هستند (برای انتقال از یک دستگاه لخت به هر دستگاه لخت دلخواه دیگری که مورد نظر باشد). این یک اصل محدودکننده برای قوانین طبیعی است…[۹]

    از این روی بسیاری از شکلهای امروزی نظریه نسبیت تنها آن را بر پایه اصل جهانی هم وردایی لورنتس یا هم ارز آن یعنی اصل فضای مینکوفسکی، بنا می‌نهند.[۱۳][۱۴]

    با استفاده از اصل نسبیت به تنهایی و بدون فرض ثابت بودن سرعت نور (یعنی با استفاده از همسانگردی فضا و تقارنی که از اصل نسبیت خاص نتیجه می‌شود) می‌توان نشان داد که تبدیلات فضازمان بین چارچوبهای لخت یکی از سه نوع اقلیدسی، گالیله‌ای یا لورنتسی هستند. در مورد تبدیلات لورنتسی می‌توان به پایستگی بازه نسبیتی و یک محدودیت سرعت متناهی به دست آورد. آزمایشها نشان می‌دهند که این حد سرعت برابر سرعت نور در خلأ می‌باشد.[۱۵][۱۶]

    انگیزه‌هایی که اندیشه ثابت بودن سرعت نور را به ارمغان آوردند، نظریه الکترومغناطیس ماکسول و نبود شواهد تجربی برای وجود اتر بودند. شواهد متناقضی در مورد اینکه تا چه حد انیشتین از نتیجه آزمایش آزمایش مایکلسون-مورلی تأثیر گرفته در دست است.[۱۷][۱۸] به هر ترتیب نتیجه آزمایش میکلسون-مورلی کمک کرد تا مفهوم ثابت بودن سرعت نور مورد پذیرش گسترده و سریعی قرار گیرد.

    نبود چارچوب مرجع مطلق[ویرایش]

    اصل نسبیت که بیان می‌دارد هیچ دستگاه مرجع لخت برتری وجود ندارد، در حقیقت به زمان گالیله برمی گردد و درون فیزیک نیوتنی نیز راه داشته‌است. اما در اواخر قرن نوزدهم وجود امواج الکترومغناطیسی فیزیکدانان را برآن داشت تا پیشنهاد دهند که جهان از ماده‌ای به نام اتر پر شده‌است که همچون رسانه‌ای عمل می‌کند که امواج و ارتعاشات از آن می‌گذرند. گمان می‌شد که اتر چارچوب مرجع مطلق است که سرعتها را می‌توان بر اساس آن اندازه گرفت و خود آن بدون حرکت و ثابت است. خواص جالبی برای اتر پنداشته می‌شد: به اندازه کافی کشسان بود که بتواند امواج الکترومغناطیسی را پشتیبانی کند و این امواج می‌توانستند با ماده برهم کنش داشته باشند، با این وجود اتر در مقابل گذر اجسام از خود مقاومتی نشان نمی‌داد. نتایج آزمایشهای مختلف و از جمله آزمایش مایکلسون-مورلی گویای این بودند که زمین همواره نسبت به اتر ثابت می‌ماند. چیزی که توضیح آن مشکل بود زیرا زمین در مداری به دور خورشید می‌گردد. راه حل انیشتین این بود که مفهوم اتر و حالت سکون مطلق را کنار بگذارد. نسبیت خاص به گونه‌ای فرمولبندی شده که هیچ چارچوب مرجعی را ویژه نمی‌داند؛ بلکه در نسبیت هر چارچوب مرجعی که با سرعت یکنواخت حرکت کند همین قوانین فیزیک را مشاهده خواهد کرد. به‌طور ویژه سرعت نور در خلأ همواره در اندازه‌گیری‌ها برابر c است، حتی وقتی که توسط چندین دستگاه مختلف که با سرعتهای متفاوت اما یکنواختی حرکت می‌کنند.

    چارچوب‌های مرجع، مختصات‌ها و تبدیلات لورنتس[ویرایش]

     
    ترسیمی از یک مخروط نوری

    نسبیت بر پایه مفهوم «چارچوب‌های مرجع» استوار است. در اینجا منظور از واژه چارچوب مرجع، یک ژرفانمایی (پرسپکتیو) مشاهده‌ای در فضاست که تغییری در حرکت آن رخ نمی‌دهد (شتاب ندارد) که از طریق آن می‌توان یک موقعیت را در امتداد سه محور فضایی اندازه گرفت. افزون براین یک چارچوب مرجع توانایی تعیین زمان رویدادها از طریق یک 'ساعت' (هر دستگاه مرجعی با تناوب یکنواخت) را دارد.

    یک رویداد، اتفاقی است که می‌توان یک زمان یکتا را به مکانی در فضا نسبت به یک چارچوب مرجع، نسبت داد: «نقطه» ای در فضازمان. از آنجاییکه سرعت نور در نسبیت در همه چارچوبهای مرجع ثابت است، می‌توان از پالس‌های نور برای اندازه‌گیری مطمئن فاصله‌ها و ارجاع به زمانهایی که رویدادها برای ساعت اتفاق افتاده‌اند استفاده نمود. اگرچه که برای نور هم‌زمانی پس از شروع رویداد طول خواهد کشید تا به ساعت برسد.

    مثلاً انفجار یک ترقه را می‌توان یک «رویداد» در نظرگرفت. می‌توان یک رویداد را با استفاده از چهار مختصات فضازمان آن مشخص نمود. زمان رویداد و مکان فضایی سه بعدی اش یک نقطه مرجع می‌سازند. این چارچوب مرجع را S می‌نامیم. در نسبیت اغلب به محاسبه موقعیت یک نقطه از یک نقطه مرجع دیگر علاقه‌مندیم. فرض کنید که چارچوب مرجع دومی به نام ′S داریم که محورهای فضایی و ساعتش با محورهای فضایی و ساعت S در زمان صفر هم‌زمان و هم‌مکان بوده‌اند، اما با سرعت ثابت vنسبت به S در امتداد محور ایکس‌ها حرکت می‌کند.

    از آنجا که در نظریه نسبیت هیچ چارچوب مرجع مطلقی وجود ندارد، مفهوم مؤکدی از «حرکت» نیز وجود ندارد زیرا همه چیز همواره نسبت به چارچوب مرجع دیگری در حرکت است. به جای آن هرگاه دو چارچوب مرجع که باسرعت یکسان در جهت یکسان حرکت کنند، به آن حرکت همراه گفته می‌شود؛ بنابراین S و′S حرکت همراه ندارند. برای رویدادها مختصات فضازمان (t,x،y,z) در دستگاه S و (′t′,x′,y′,z) در دستگاه ′S تعریف می‌کنیم. تبدیل لورنتس بیان می‌کند که این دو مختصات به شیوه زیر در ارتباط هستند:

    {\displaystyle {\begin{cases}x'=\gamma \left(x-vt\right)\\y'=y\\z'=z\\t'=\gamma \left(t-{\frac {vx}{c^{2}}}\right)\end{cases}}}{\begin{cases}x'=\gamma \left(x-vt\right)\\y'=y\\z'=z\\t'=\gamma \left(t-{\frac  {vx}{c^{{2}}}}\right)\end{cases}}

    که در آن {\displaystyle \gamma ={1 \over {\sqrt {1-\beta ^{2}}}}}\gamma ={1 \over {\sqrt  {1-\beta ^{2}}}} را فاکتور لورنتس می‌نامند و {\displaystyle \beta ={\frac {v}{c}}}\beta ={\frac  {v}{c}}c سرعت نور در خلأ است و و سرعت v دستگاه ′S در راستای محور xهاست. مختصات y,z تغییری نمی‌کنند و تنها مختصات x , t تبدیل می‌شوند. این تبدیلات لورنتس یک گروه تک پارامتر از نگاشت‌های خطی تشکیل می‌دهند که به آن پارامتر تندی (به انگلیسیrapidity) می‌گویند. کمیتی که نسبت به تبدیلات لورنتس ناوردا باشد را کمیت نرده‌ای لورنتس می‌نامند.

    چنانچه تبدیلات لورنتس و معکوسشان را برحسب اختلاف مختصاتها بنویسیم به گونه‌ای که مثلاً مختصات یک رویداد (x۱t۱) and (x۱t۱) باشد، مختصات رویداد دیگر (x۲t۲) خواهد بود و (x۲t۲) و اختلافها را به صورت زیر تعریف کنیم

    {\displaystyle {\begin{array}{ll}\Delta x'=x'_{2}-x'_{1}\ ,&\Delta x=x_{2}-x_{1}\ ,\\\Delta t'=t'_{2}-t'_{1}\ ,&\Delta t=t_{2}-t_{1}\ ,\\\end{array}}}{\begin{array}{ll}\Delta x'=x'_{2}-x'_{1}\ ,&\Delta x=x_{2}-x_{1}\ ,\\\Delta t'=t'_{2}-t'_{1}\ ,&\Delta t=t_{2}-t_{1}\ ,\\\end{array}}

    به روابط زیر می‌رسیم

    {\displaystyle {\begin{array}{ll}\Delta x'=\gamma (\Delta x-v\,\Delta t)\ ,&\Delta x=\gamma (\Delta x'+v\,\Delta t')\ ,\\\Delta t'=\gamma \left(\Delta t-{\dfrac {v\,\Delta x}{c^{2}}}\right)\ ,&\Delta t=\gamma \left(\Delta t'+{\dfrac {v\,\Delta x'}{c^{2}}}\right)\ ,\\\end{array}}}{\begin{array}{ll}\Delta x'=\gamma (\Delta x-v\,\Delta t)\ ,&\Delta x=\gamma (\Delta x'+v\,\Delta t')\ ,\\\Delta t'=\gamma \left(\Delta t-{\dfrac  {v\,\Delta x}{c^{{2}}}}\right)\ ,&\Delta t=\gamma \left(\Delta t'+{\dfrac  {v\,\Delta x'}{c^{{2}}}}\right)\ ,\\\end{array}}

    تبدیلات لورنتس که توسط ریاضیدان و فیزیکدان آلمانی هندریک لورنتس با استفاده از روابط هندسی و دو فرض همسانگرد و همگن بودن فضا برای توجیه نظریهٔ اتر به دست آمد اساس نظریهٔ نسبیت خاص می‌باشد. همسانگرد بودن فضا بدین معناست که خواص آن در تمامی جهات یکسان است. همگن بودن فضا بدین معناست که خواص فضا به نقطه‌ای که شما در آن قرار دارید بستگی ندارد. فرض همسانگرد بودن فضا به ما اجازه می‌دهد که بتوانیم حرکت ذره را در راستای محور xها بررسی کنیم (یعنی از راستاهای y و z برای خلاصه سازی چشم پوشی کنیم)، فرض همگن بودن فضا تضمین می‌کند که این معادلات حتماً درجه اول هستند، یعنی تنها توان اول متغیرهای ما می‌توانند دخالت داشته باشند. (چون اگر به توان دوم یا درجات بالاتر بستگی داشته باشند اثبات می‌شود که آنگاه طول یک میله بستگی به نقطه‌ای از فضا که میله در آن قرار گرفته‌است دارد، یعنی مثلاً یک میله که بدون حرکت در ارتفاع ۵ متری قرار دارد با هنگامی که همان میله بدون حرکت در ارتفاع ۳ متری قرار دارد طول متفاوتی دارد و این خلاف شهود ماست)

    نکته جالب توجه این است که این معادلات پیش از چاپ مقالهٔ آلبرت انیشتین در رابطه با الکترودینامیک در اجسام متحرک به دست آمده بود اما فرض وجود اتر و فضایی برای انتشار امواج الکترومغناطیس به قدری قوی بود که این تبدیلات به عنوان تلاشی برای اصلاح آن فرضیه عنوان شد. چند سال بعد انیشتین به گونهٔ دیگری با استفاده از دو پنداشتی که در پیش گفته شد به تبدیلات لورنتس رسید! همانگونه که خود انیشتین نیز گفته است: «تمامی نتایج نسبیت خاص می‌توانند از تبدیلات لورنتس به دست آیند.»

    پیامدهای ناشی از تبدیلات لورنتس[ویرایش]

    دو اصل موضوع نسبیت خاص به همراه فرض‌های دیگری، مانند همگن و همسانگرد بودن فضا، منجر به نتایجی می‌شوند که همانند خودِ این اصل موضوع‌ها خلاف شهود و تجربه‌های روزمرهٔ ما هستند. با وجود این، این پیامدها بارها در آزمایش‌های گوناگون آزموده شده و مورد تأیید قرار گرفته‌اند. امروزه نسبیت خاص کاملاً پذیرفته شده‌است و جزئی از دانش عملی هر فیزیکدانی به‌شمار می‌آید. پیامدهای نسبیت خاص از تبدیلات لورنتس نتیجه می‌شوند.[۱۹] این تبدیلات و پیرو آن نظریه نسبیت خاص در مواردی که سرعتهای نسبی با سرعت نور قابل مقایسه می‌شوند نتایجی متفاوت بامکانیک نیوتنی تولید می‌کنند. سرعت نور بسیار بزرگتر از هرچیزی است که انسان‌ها با آن سر و کار دارند از این رو آثاری که توسط نسبیت خاص پیش‌بینی شده‌اند در آغاز خلاف شهود به نظر می‌رسند.

    نسبی بودن هم‌زمانی[ویرایش]

     
    رویداد A با B در چارچوب مرجع سبز هم‌زمان است، اما در چارچوب آبی قبل و در چارچوب قرمز بعد از B رخ می‌دهد.

    دو رویداد در مکانهای متفاوت که در چارچوب مرجع یک ناظر لخت هم‌زمان رخ می‌دهند، ممکن است در چارچوب مرجع یک ناظر لخت دیگر غیر هم‌زمان باشند. (نبود هم‌زمانی مطلق) اگر یک ناظر لخت دو پدیدهٔ آ و ب را هم‌زمان ببیند، ناظر لخت دیگری که با سرعت نسبت به ناظر اول حرکت می‌کند، بسته به شرایط ممکن است پدیدهٔ آ را زودتر، هم‌زمان، یا دیرتر از پدیدهٔ ب ببیند. هم‌زمانی در نسبیت خاص معنای مطلق و نیوتنی خود را از دست می‌دهد و پدیده‌ای نسبی می‌شود.

    از معادله اول تبدیلات لورنتس بر حسب تغییر مختصات‌ها داریم:

    {\displaystyle \Delta t'=\gamma \left(\Delta t-{\frac {v\,\Delta x}{c^{2}}}\right)}\Delta t'=\gamma \left(\Delta t-{\frac  {v\,\Delta x}{c^{{2}}}}\right)

    واضح است که دو رویداد که در چارچوب S هم‌زمان هستند (شرط Δt = ۰ صادق است)، الزاماً در دستگاه لخت دیگر ′S هم‌زمان نیستند. تنها در صورتی که این رویدادها در چارچوب S هم مکان باشند (شرط Δx = ۰ صادق باشد) در در دستگاه لخت دیگر′S نیز هم‌زمان خواهند بود.

    انقباض طول[ویرایش]

    مقالهٔ اصلی: انقباض طول ابعاد (مانند طول) یک شیء که توسط یک ناظر اندازه‌گیری می‌شوند ممکن است از نتایج اندازه‌گیری یک ناظر دیگر کوچکتر باشند.

    مثلاً در نظر بگیرید که میله‌ای در یک سیستم نامشخص S درحال سکون و در امتداد محور x قرارگرفته‌است. در این دستگاه طول میله اندازه‌گیری شده Δx است. برای اندازه‌گیری طول این میله در دستگاه 'S که در آن ساعت در حال حرکت است، فواصل ′x تا نقاط انتهایی میله باید هم‌زمان اندازه‌گیری شوند. به عبارت دیگر ویژگی اندازه‌گیری این است که Δt′ = ۰ که می‌توان آن را با معادله چهارم ترکیب کرد و رابطه بین Δx و ′Δx را به دست آورد

    {\displaystyle \Delta x'={\frac {\Delta x}{\gamma }}}\Delta x'={\frac  {\Delta x}{\gamma }} برای رویدادهایی که {\displaystyle \Delta t'=0\ }\Delta t'=0\

    نتیجه می‌شود که یک میله که در راستای طول خود در حرکت است، به چشم یک ناظر ساکن، کوتاه‌تر به نظر می‌رسد. به زبان ریاضی:

    {\displaystyle l'=l{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}l'=l{\sqrt  {1-{\frac  {v^{2}}{c^{2}}}}}

    {\displaystyle 'l}'l طول میله از دید ناظر 'S است که با سرعت {\displaystyle v}v نسبت به چارچوب S که میله در آن ساکن است، حرکت می‌کند. {\displaystyle l}l طول میله در چارچوب سکون S است.

    اتساع زمان[ویرایش]

    مقالهٔ اصلی:اتساع زمان

    بازه زمانی بین دو رویداد از یک ناظر به ناظر دیگر ثابت نیست. بلکه به سرعت نسبی چارچوبهای مرجع ناظرها بستگی دارد.

    ساعتی را در نظر بگیرید که در دستگاه غیر ویژه S در حالت سکون قراردارد. بنا بر این بین دو تیک متوالی ساعت Δx = ۰ خواهد بود. برای اینکه رابطه بین زمان‌های اندازه‌گیری شده بین تیک‌ها در هر دستگاه را بیابیم، می‌توانیم از معادله اول استفاده کنیم:

    {\displaystyle \Delta t'=\gamma \,\Delta t}\Delta t'=\gamma \,\Delta t برای رویدادهایی که {\displaystyle \Delta x=0\ }\Delta x=0\

    این نشان می‌دهد که زمان ('Δt) بین دو تیک در دستگاهی که در آن ساعت حرکت می‌کند('S) طولانی‌تر از زمان (Δt) بین تیک‌ها که با ساعت چارچوب در حال سکون(S) اندازه‌گیری شده، خواهد بود. اتساع زمان شماری از پدیده‌های فیزیکی را توضیح می‌دهد. مثلا می‌توان به کاهش نرخ میون‌هایتولید شده توسط پرتوهای کیهانی در برخورد با جو زمین شاره کرد.[۲۰]

    اگر ناظر S یک بازهٔ زمانی را {\displaystyle \tau }\tau  اندازه بگیرد، ناظر 'S همان بازهٔ زمانی را {\displaystyle '\tau }'\tau  اندازه می‌گیرد:

    {\displaystyle \tau '={\frac {\tau }{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}\tau '={\frac  {\tau }{{\sqrt  {1-{\frac  {v^{2}}{c^{2}}}}}}}

    یعنی ناظر متحرک آن بازه را طولانی‌تر می‌بیند.

    ترکیب سرعتها[ویرایش]

    افزودن سرعتها چندان ساده نیست. اگر ناظر در S جسمی را در حال حرکت در امتداد محور x با سرعت u اندازه‌گیری نماید، ناظری که در دستگاه ′S (چارچوب مرجعی که نسبت به S با سرعت v در امتداد محور x حرکت می‌کند) قرار دارد جسم را در حال حرکت با سرعت 'u اندازه‌گیری خواهد کرد که با استفاده از تبدیلات لورنتس برای چارچوب ′S داریم

    {\displaystyle u'={\frac {dx'}{dt'}}={\frac {\gamma (dx-vdt)}{\gamma (dt-vdx/c^{2})}}={\frac {(dx/dt)-v}{1-(v/c^{2})(dx/dt)}}={\frac {u-v}{1-uv/c^{2}}}}u'={\frac  {dx'}{dt'}}={\frac  {\gamma (dx-vdt)}{\gamma (dt-vdx/c^{2})}}={\frac  {(dx/dt)-v}{1-(v/c^{2})(dx/dt)}}={\frac  {u-v}{1-uv/c^{2}}}

    و در چارچوب S:

    {\displaystyle u={\frac {dx}{dt}}={\frac {\gamma (dx'+vdt')}{\gamma (dt'+vdx'/c^{2})}}={\frac {(dx'/dt')+v}{1+(v/c^{2})(dx'/dt')}}={\frac {u'+v}{1+u'v/c^{2}}}\ }u={\frac  {dx}{dt}}={\frac  {\gamma (dx'+vdt')}{\gamma (dt'+vdx'/c^{2})}}={\frac  {(dx'/dt')+v}{1+(v/c^{2})(dx'/dt')}}={\frac  {u'+v}{1+u'v/c^{2}}}\

    در نظر داشته باشید که اگر اجسام در چارچوب S در حال حرکت با سرعت نور بودند (u = c) در چارچوب دیگر 'S نیز با سرعت نور حرکت می‌کردند. همچنین اگر هر دو سرعت u و v نسبت به سرعت نور کوچک باشند به تبدیل شهودی تر گالیله‌ای برای سرعتها برمی گردیم.

    {\displaystyle u'\approx u-v\ .}{\displaystyle u'\approx u-v\ .}

    مثالی که معمولاً در این مورد زده می‌شود مثال قطاری است (چارچوب S در بالا) که با سرعت v نسبت به ریلها (چارچوب S′) حرکت می‌کند. کودکی درون قطار توپ بیسبالی را به سمت شرق با سرعت u نسبت به قطار پرتاب می‌کند. در فیزیک کلاسیک ناظری که در حال سکون روی ریلها قرار دارد سرعت توپ بیسبال را

    u = u′ + v

    اندازه‌گیری خواهد نمود. در حالیکه در نسبیت خاص این درست نیست بلکه سرعت توپ بیسبال از معادله دوم به دست می‌آید:

    (u = (u′ + v)/(1 + uv/c۲

    سایر پیامدها[ویرایش]

    چرخش توماس[ویرایش]

    جهت‌گیری یک جسم (یعنی امتداد محورهایش نسبت به محورهای ناظر) برای ناظرین مختلف ممکن است متفاوت باشد. بر خلاف سایر آثار نسبیتی این پدیده در سرعتهای نسبتاً پایین هم مشخص می‌شود همان‌طور که در چرخش ذرات متحرک مشاهده می‌شود.

    هم‌ارزی جرم و انرژی[ویرایش]

    مقالهٔ اصلی: هم‌ارزی جرم و انرژی چنانچه سرعت یک جسم از دید یک ناظر به سرعت نور نزدیک گردد، جرم نسبیتی آن افزایش می‌یابد و از دید چارچوب مرجع ناظر، شتاب گرفتن جسم هر لحظه دشوارتر و دشوارتر به نظر خواهد رسید.

    محتوای انرژی جسمی در حال سکون با جرم m برابر با mc۲ است. پایستگی انرژی ایجاب می‌نماید که در هر واکنشی کاهش در مجموع جرم ذرات باید با افزایش در انرژی جنبشی ذرات پس از واکنش همراه باشد؛ و متشابها با کاهش انرژی جنبشی، جرم ذرات افزایش می‌یابد.

    افزون بر مقالاتی که در بالا به آن‌ها ارجاع داده شد، انیشتین حداقل چهار مقاله دیگر هم در مورد مباحث اکتشافی در مورد هم‌ارزی جرم و انرژی با رابطه E = mc۲ منتشر نمود.

    هم‌ارزی جرم و انرژی از نتایج نسبیت خاص است. انرژی و تکانه که در مکانیک نیوتنی مجزا هستند، در نسبیت یک چهار-بردار تشکیل می‌دهند و بدین ترتیب مولفه زمان (انرژی) و مولفه مکان (تکانه) رابطه‌ای غیر بدیهی با یکدیگر خواهند داشت. برای شیئی که در حال سکون است، جهار-بردار انرژی-تکانه عبارت است از (E, ۰، ۰، ۰): یک مولفه زمان دارد که انرژی است و سه مولفه مکان که صفر هستندبا تغییر چارچوب از طریق تبدیل لورنتز در جهت x با سرعت کوچک v چهار-بردار انرژی-تکانه برابر (EEv/c۲, ۰، ۰) می‌گردد. تکانه برابر است با انرژی ضربدر سرعت تقسیم بر c۲. به این ترتیب جرم نیوتنی یک جسم که نسبت تکانه به سرعت است برابر با E/c۲ خواهد بود.

    تکانه و انرژی از ویژگی‌های ماده و تابش هستند و غیرممکن است که بتوانیم تنها با استفاده از دو اصل نسبیت خاص بتوانیم نتیجه بگیریم که این دو تشکیل یک چهار-بردار می‌دهند. زیرا این اصول در مورد ماده و تابش حرفی نمی‌زنند و تنها از زمان و فضا سخن می‌گویند؛ بنابراین برای رسیدن به این نتیجه به استدلال فیزیکی بیشتری نیازمندیم. در مقاله سال ۱۹۰۵ خود انیشتین از اصول اضافه‌ای استفاده کرد که در مکانیک نیوتنی هم برای سرعتهای پایین صادق هستند، مثل اینکه در سرعتهای پایین تنها یک کمیت نرده‌ای انرژی و سه بردار تکانه وجود دارند و قانون پایستگی انرژی و تکانه دقیقاً در نسبیت صادق است. علاوه بر این او فرض نمود که انرژی نور نیز مانند بسامدش با همان فاکتور انتقال دوپلر تغییر می‌کند که قبلاً درستی آن را با استفاده از معادلات ماکسول نشان داده بود.[۱] نخستین مقاله انیشتین در این موضوع، مقاله "آیا لختی یک جسم به محتوای انرژی اش وابسته است؟" بود که در سال ۱۹۰۵ منتشر گردید.[۲۱] گرچه بحث‌های انیشتین در این مقاله تقریباً مورد پذیرش همگانی فیزیکدانان قرار گرفته‌است، اما نویسندگان بسیاری نیز در طول سال‌ها پیشنهاد داده‌اند که ممکن است این بحث‌ها نادرست باشند.[۲۲] سایر نویسندگان نیز براین باورند که چون این بحثها بر پایه فرضهای ضمنی بنا شده‌اند، بی‌نتیجه‌اند.[۲۳]

    انیشتین وجود اختلاف نظر در مورد نتیجه گیریهایش را در مقاله‌ای در مورد نسبیت خاص در سال ۱۹۰۷ پذیرفته بود. در این مقاله او عنوان می‌کند که تکیه بر معادلات ماکسول برای بحث اکتشافی جرم انرژی مشکل زاست. بحث او در مقاله سال ۱۹۰۵ می‌تواند در مورد تابش هر ذره بدون جرمی برقرار باشد اما معادلات ماکسول به‌طور ضمنی مورد استفاده قرار گرفته‌اند تا مشخص شود که تابش نور می‌تواند تنها با انجام کار صورت گیرد. برای تابش امواج الکترومغناطیس تنها چیزی که باید انجام شود تکان دادن یک ذره بار دار است و این همان انجام کار است و در نتیجه تابش ناشی از انرژی است.[۲۴][۲۵]

    یک انسان تا چه اندازه می‌تواند از زمین دور گردد؟[ویرایش]

    از آنجا که هیچ‌کس نمی‌تواند سریعتر از نور حرکت کند، ممکن است این گونه نتیجه‌گیری کنیم که اگر عمر مفید انسان را بین ۲۰ تا ۶۰ سال در نظر بگیریم، یک انسان نمی‌تواند بیشتر از ۴۰ سال نوری از زمین دور شود. اما این نتیجه‌گیری اشتباه است. به دلیل اتساع زمان یک سفینه خیالی می‌تواند در طول عمر مفید خلبان آن هزاران سال نوری را بپیماید. اگر سفینه طوری ساخته شود که با شتاب ثابت ۱g حرکت کند، در کمتر از یک سال سرعت آن برای ناظر زمینی تقریباً به سرعت نور می‌رسد. اتساع زمان عمر فرد را از دید ناظر زمینی افزایش می‌دهد اما ساعتی که با خلبان سفر می‌کند چنین تغییری نخواهد داشت. مردم روی زمین زمان بیشتری را نسبت به وی تجربه خواهند کرد یک سفر ۵ ساله وی ½۶ سال در زمین به طول می‌انجامد و مسافتی برابر ۶ سال نوری را طی خواهد کرد. یک سفر ۲۰ ساله برای وی (۵ سال شتاب گرفتن و ۵ سال کاهش سرعت، هرکدام دوبار) ۳۵۵ سال زمینی به طول می‌انجامد و در این مدت مسافت ۳۳۱ سال نوری را طی خواهد نمود.[۲۶] یک سفر ۴۰ ساله کامل با شتاب g در روی زمین ۵۸۰۰۰ سال به طول می‌انجامد و ۵۵۰۰۰ سال نوری را پوشش می‌دهد. یک سفر ۴۰ ساله با شتاب ۱٫۱g به مدت ۱۴۸۰۰۰ سال زمینی به طول می‌انجامد و مسافتی برابر ۱۴۰۰۰۰ سال نوری را پوشش خواهد داد. دلیل اینکه میونی که نزدیک به سرعت نور حرکت می‌کند مسافتی بیشتر از c ضرب‌در نیمه‌عمر آن طی می‌کند نیز همین پدیده اتساع زمان است.[۲۷]

    علیت و ممنوعیت حرکت سریعتر از نور[ویرایش]

     
    مخروط نور

    در نمودار شکل مخروط نور، بازه AB یک 'زمان واره' است؛ یعنی چارچوب مرجعی وجود دارد که در آن A و B در یک نقطه مکانی از فضا رخ می‌دهند و تنها از طریق رخ دادن در زمان‌های مختلف از هم جدا می‌گردند. اگر در آن چارچوب A پیش از B رخ دهد در تمام چارچوب‌ها A پیش از B رخ خواهد داد. به صورت فرضی، ماده (یا اطلاعات) می‌تواند از A به B حرکت کند پس می‌تواند رابطه علیتی بین A و B وجود داشته باشد. (A علت و B معلول)

    بازه AC در همان شکل یک 'فضاواره' است؛ یعنی چارچوب مرجعی وجود دارد که در آن A و C در یک زمان رخ می دهندو تنها از نظر مکان از هم جدا هستند. در برخی چارچوب‌ها A پیش از C رخ می‌دهد و در برخی A پس از C رخ می‌دهد. اگر امکان این بود که رابطه علیتی بین A و C بوجود آید، با پارادوکس‌های علیت برخورد می‌کردیم. مثلاً اگر A علت باشد و C معلول، چارچوبهای مرجعی وجود خواهند داشت که در آن‌ها معلول از علت از نظر زمانی پیشی می‌گیرد. اگر چه این به خودی خود پارادوکسی را پدیدنمی‌آورد، اما می‌توان نشان داد[۲۸][۲۹] که سیگنالهایی که سریعتر از نور فرستاده شوند می‌توانند به گذشته فرد برگردند. اگر فرد سیگنال را تنها در صورتی بفرستد که هیچ سیگنالی در گذشته دریافت نکرده باشد به یک پارادوکس علیتی می‌رسیم.

    بنابراین برای حفظ علیت، یکی از پیامدهای نسبیت خاص این است که هیچ سیگنال اطلاعاتی یا جسم مادی نمی‌تواند سریعتر از سرعت نور در خلاء حرکت کند. با این حال برخی «چیزها» می‌توانند سریعتر از نور حرکت کنند. مثلاً مکانی که پرتو یک نورافکن به پایین ابرها برخورد می‌کند وقتی که نورافکن سریع می‌گردد می‌تواند سریعتر از نور حرکت کند.[۳۰]

    حتی بدون در نظر گرفتن علیت هم دلایل دیگری نیز برای اینکه چرا در نسبیت خاص سرعتهای بیشتر از نور ممنوع است وجود دارد. مثلاً اگر نیروی ثابتی برای مدت نامحدودی به جسمی وارد شود، اگر از F = dp/dt انتگرال بگیریم، تکانه‌ای به دست می‌آوریم که بدون مرز رشد می‌کند. دلیل این امر این است که وقتی {\displaystyle \,v}\,v به c میل می‌کند، {\displaystyle p=m\gamma v\,}p=m\gamma v\, به بی‌نهایت میل خواهد کرد. از دید ناظری که در حرکت شتابدار نیست، به نظر خواهد رسید که لختی جسم در حال افزایش است و از این رو همان نیرو شتاب کمتری ایجاد می‌نماید. این رفتار در شتاب دهنده‌های ذرات مشاهده شده‌است.

    گونتر نیمتز و پتریسا اکل در مطالعات تجربی و نظری در مورد تونل‌زنی کوانتومی ادعا نمودند که سیگنالها ممکن است تحت شرایط خاصی سریعتر از نور حرکت کنند.[۳۱][۳۲][۳۳][۳۴] مشاهده شد که سیگنالهای دیجیتال فیبری با سرعتی در حدود پنج برابر سرعت نور و یک الکترون در تونلی با زمان صفر اطلاعات یونیزه شدن را منتقل نمود به گونه‌ای که فوتون‌ها، فونون‌ها و الکترون‌ها زمان صفر را در مانع تونل زنی گذراندند. بنا بر نیمتز و اکل، این فرایند تنها علیت انیشتین و نسبیت خاص را نقض می‌کند و علیت پایه‌ای را نقض نمی‌کند: انتشار با سرعت بیشتر از نور باعث سفر در زمان نمی‌شود.[۳۵][۳۶] ادعای نیمتز توسط بسیاری از دانشمندان رد یا مورد بحث قرارگرفته‌است.[۳۷][۳۸][۳۹][۴۰]

    هندسه فضازمان[ویرایش]

    مقایسه بین فضای تخت اقلیدسی و فضای مینکوفسکی[ویرایش]

     
    مقایسه تعامد و چرخش در دستگاه‌های مختصات بین چپ:فضای اقلیدسی از طریق زاویه چرخشی φ, راست: in فضازمان مینکوفسکی از طریق زاویه هایپربولیک φ (خطوط قرمز با برچسب cجهان‌خط‌های سیگنال نور را مشخص می‌کنند، یک بردار بر خودش عمود است اگر روی این خطوط قرار گیرد).[۴۱]

    نسبیت خاص از یک فضای مینکوفسکی تخت چهاربعدی - مثالی از یک فضازمان - استفاده می‌کند. فضای مینکوفسکی بسیار به فضای اقلیدسی سه بعدی استاندارد شبیه است اما در مورد زمان یک تفاوت اساسی با آن دارد.

    در فضای سه بعدی دیفرانسیل فاصله (عنصرخط) ds در رابطه زیر تعریف می‌شود

    {\displaystyle ds^{2}=d\mathbf {x} \cdot d\mathbf {x} =dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2},}ds^{2}=d{\mathbf  {x}}\cdot d{\mathbf  {x}}=dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2},

    که در آن (dx = (dx۱dx۲dx۳ دیفرانسیل‌های سه بعد فضایی هستند. در هندسه مینکوفسکی یک بعد اضافه با مختصات x۰ دارد که از زمان ناشی می‌شود، به گونه‌ای که دیفرانسیل فاصله در رابطه زیر صدق کند

    {\displaystyle ds^{2}=-dx_{0}^{2}+dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2},}ds^{2}=-dx_{0}^{2}+dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2},

    که در آن (dx = (dx۰dx۱dx۲dx۳ دیفرانسیل‌های چهار بعد فضازمان هستند. این موضوع بینش نظری عمیقی دربردارد: نسبیت خاص به سادگی یک تقارن چرخشی از فضازمان ماست که قابل مقایسه با تقارن چرخشی در فضای اقلیدسی است.[۴۲] همان‌طور که فضای اقلیدسی از متریک اقلیدسی استفاده می‌کند، فضازمان نیز از یک متریک مینکوفسکی استفاده می‌کند. اساساً می‌توان نسبیت خاص را ناوردایی هر بازه فضازمان (که در واقع فاصله چهاربعدی بین دو رویداد در فضازمان است) از دید ناظری در هر چارچوب مرجع لخت دلخواه تعریف کرد. تمام معادلات و تأثیرات نسبیت خاص را می‌توان از تقارن چرخشی (گروه پوانکاره) فضازمان مینکوفسکی نتیجه گرفت.

    شکل واقعی ds به متریک و مختصات x۰ انتخاب شده بستگی دارد. برای اینکه مختصات را شبیه مختصات فضا بکنیم می‌توان آن را به عنوان یک عدد موهومی در نظر گرفت: x۰ = ict. میستر، تورن و ویلر در کتاب «گرانش» (۱۹۷۱، §۲٫۳) خود چنین می‌نویسند که سرانجام درک ژرف تری از هر دو نظریه نسبیت عام و خاص از طریق متریک مینکوفسکی وبا در نظرگرفتن x۰ = ct به جای یک متریک اقلیدسی نقاب زده با مقدار ict به عنوان مختصات زمان، حاصل خواهد شد.

    فضازمان سه بعدی[ویرایش]

     
    کره فضایی پوچ.

    اگر یکی از ابعاد فضایی را کاهش دهیم تا بتوانیم فیزیک را فضای سه بعدی نمایش دهیم

    {\displaystyle ds^{2}=dx_{1}^{2}+dx_{2}^{2}-c^{2}dt^{2},}ds^{2}=dx_{1}^{2}+dx_{2}^{2}-c^{2}dt^{2},

    خواهیم دید که ژئودزیک‌های پوچ در امتداد یک مخروط دو تایی (در شکل سمت راست) به معادله زیر قرارمی‌گیرند

    {\displaystyle ds^{2}=dx_{1}^{2}+dx_{2}^{2}-c^{2}dt^{2},}ds^{2}=dx_{1}^{2}+dx_{2}^{2}-c^{2}dt^{2},

    ویا به سادگی

    {\displaystyle dx_{1}^{2}+dx_{2}^{2}=c^{2}dt^{2},}dx_{1}^{2}+dx_{2}^{2}=c^{2}dt^{2},

    که معادله یک دایره به شعاع c dt است.

    فضازمان چهار بعدی[ویرایش]

    اگر آن را به سه بعد فضایی افزایش دهیم، ژئودزیک‌های پوچ مخروط‌های چهاربعدی هستند.

    {\displaystyle ds^{2}=0=dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2}-c^{2}dt^{2}}ds^{2}=0=dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2}-c^{2}dt^{2}

    بنابراین

    {\displaystyle dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2}=c^{2}dt^{2}.}dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2}=c^{2}dt^{2}.

    این مخروط دوتایی پوچ «خط دید» را در نقطه‌ای از فضا مشخص می‌کند، به این معنی که وقتی به ستارگان نگاه می‌کنیم و می‌گوییم «نوری که از ستاره به من می‌رسد X سال عمر دارد»، در واقع ما در امتداد این خط دید را نگاه می‌کنیم:یک ژئودزیک پوچ. ما به رویدادی در فاصله {\displaystyle d={\sqrt {x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}}d={\sqrt  {x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}} و در یک زمان d/c در گذشته می‌نگریم. به همین دلیل مخروط دوتایی پوچ «مخروط نور» نیز نامیده می‌شود.

    مخروط در ناحیه t− اطلاعاتی است که نقطه دریافت می‌کند و مخروط ناحیه t+ اطلاعاتی است که نقطه می‌فرستد.

    فضای مینکوفسکی را می‌توان با استفاده از نمودارهای مینکوفسکی نمایش داد که در فهمیدن بسیاری از آزمایشهای فکری در نسبیت خاص نیز کارساز هستند.

    فیزیک در فضازمان[ویرایش]

    معادلات نسبیت خاص را می‌توان به شکل هم وردای آشکار(به انگلیسیManifestly Covariant) نوشت (که در آن همه عبارتها تانسور هستند). موقعیت یک رویداد در فضازمان را توسط یک چهار-بردار پادوَردا (به انگلیسیContravariant four vectr) با مؤلفه‌های

    {\displaystyle x^{\nu }=(x^{0},x^{1},x^{2},x^{3})=(ct,x,y,z).}x^{\nu }=(x^{0},x^{1},x^{2},x^{3})=(ct,x,y,z).

    نمایش می‌دهند. ما x۰ = ct را تعریف می‌کنیم تا مختصات زمانهمان بعد فاصله‌ای را داشته باشد که سایر ابعاد فضایی دارند تا بدین وسیله برخورد یکسانی با فضا و زمان داشته باشیم.[۴۳][۴۴][۴۵] بالانویس‌ها در این بخش نمایشگر اندیس‌های پادورداها هستند و نه توان؛ مگر در مواردی که مربع یک عبارت را مشخص می‌نمایند. زیرنویس‌ها نمایشگر اندیس‌های همورداها هستند که مقادیری از ۰ تا ۳ می‌گیرند، مانند چهار-گرادیان میدان نرده‌ای φ:

    {\displaystyle \partial _{\mu }\phi =(\partial _{0},\partial _{1},\partial _{2},\partial _{3})\phi =\left({\frac {1}{c}}{\frac {\partial \phi }{\partial t}},{\frac {\partial \phi }{\partial x}},{\frac {\partial \phi }{\partial y}},{\frac {\partial \phi }{\partial z}}\right).}\partial _{\mu }\phi =(\partial _{0},\partial _{1},\partial _{2},\partial _{3})\phi =\left({\frac  {1}{c}}{\frac  {\partial \phi }{\partial t}},{\frac  {\partial \phi }{\partial x}},{\frac  {\partial \phi }{\partial y}},{\frac  {\partial \phi }{\partial z}}\right).

    تبدیلات کمیتهای فیزیکی بین چارچوب‌های مرجع[ویرایش]

    تبدیلات مختصات بین چارچوبهای مرجع لخت توسط تانسور تبدیلات لورنتس Λ به دست می‌آید. برای مورد خاص حرکت در امتداد محور x:

    {\displaystyle \Lambda ^{\mu '}{}_{\nu }={\begin{pmatrix}\gamma &-\beta \gamma &0&0\\-\beta \gamma &\gamma &0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}}\Lambda ^{{\mu '}}{}_{\nu }={\begin{pmatrix}\gamma &-\beta \gamma &0&0\\-\beta \gamma &\gamma &0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}

    که به سادگی ماتریس یک بالابردن (مانند چرخش) بین مختصات‌های x و ct است که در آن 'μ ردیف و ν ستون را نشان می‌دهند و

    {\displaystyle \beta ={\frac {v}{c}},\ \gamma ={\frac {1}{\sqrt {1-\beta ^{2}}}}.}\beta ={\frac  {v}{c}},\ \gamma ={\frac  {1}{{\sqrt  {1-\beta ^{2}}}}}.

    تبدیل یک چهار-بردار از یک چارچوب لخت به دیگری (برای سادگی انتقال‌ها را نادیده می‌گیریم) با تبدیلات لورنتس به دست می‌آید:

    {\displaystyle T^{\mu '}=\Lambda ^{\mu '}{}_{\nu }T^{\nu }}T^{{\mu '}}=\Lambda ^{{\mu '}}{}_{{\nu }}T^{\nu }

    در جاییکه یک جمع زدن ضمنی 'μ و 'ν از ۰ تا ۳ نیز موجود باشد. تبدیل معکوس به صورت زیر خواهد بود:

    {\displaystyle \Lambda _{\mu '}{}^{\nu }T^{\mu '}=T^{\nu }}{\displaystyle \Lambda _{\mu '}{}^{\nu }T^{\mu '}=T^{\nu }}

    که در آن {\displaystyle \Lambda _{\mu '}{}^{\nu }}\Lambda _{{\mu '}}{}^{{\nu }} ماتریس دوجانبه {\displaystyle \Lambda ^{\mu '}{}_{\nu }}\Lambda ^{{\mu '}}{}_{{\nu }} است.

    در ورد تبدیلات لورنتس بالا در راستای x:

    {\displaystyle {\begin{pmatrix}ct'\\x'\\y'\\z'\end{pmatrix}}=x^{\mu '}=\Lambda ^{\mu '}{}_{\nu }x^{\nu }={\begin{pmatrix}\gamma &-\beta \gamma &0&0\\-\beta \gamma &\gamma &0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}{\begin{pmatrix}ct\\x\\y\\z\end{pmatrix}}={\begin{pmatrix}\gamma ct-\gamma \beta x\\\gamma x-\beta \gamma ct\\y\\z\end{pmatrix}}.}{\begin{pmatrix}ct'\\x'\\y'\\z'\end{pmatrix}}=x^{{\mu '}}=\Lambda ^{{\mu '}}{}_{\nu }x^{\nu }={\begin{pmatrix}\gamma &-\beta \gamma &0&0\\-\beta \gamma &\gamma &0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}{\begin{pmatrix}ct\\x\\y\\z\end{pmatrix}}={\begin{pmatrix}\gamma ct-\gamma \beta x\\\gamma x-\beta \gamma ct\\y\\z\end{pmatrix}}.

    به صورت عمومی تر بیشتر کمیتهای فیزیکی به بهترین شکل توسط (مولفه‌های) تانسورها توصیف می‌شوند؛ بنابراین برای تبدیل از یک چارچوب به دیگری از قانون مشهور تبدیل تانسور استفاده می‌کنیم.[۴۶]

    {\displaystyle T_{\theta '\iota '\cdots \kappa '}^{\alpha '\beta '\cdots \zeta '}=\Lambda ^{\alpha '}{}_{\mu }\Lambda ^{\beta '}{}_{\nu }\cdots \Lambda ^{\zeta '}{}_{\rho }\Lambda _{\theta '}{}^{\sigma }\Lambda _{\iota '}{}^{\upsilon }\cdots \Lambda _{\kappa '}{}^{\phi }T_{\sigma \upsilon \cdots \phi }^{\mu \nu \cdots \rho }}T_{{\theta '\iota '\cdots \kappa '}}^{{\alpha '\beta '\cdots \zeta '}}=\Lambda ^{{\alpha '}}{}_{{\mu }}\Lambda ^{{\beta '}}{}_{{\nu }}\cdots \Lambda ^{{\zeta '}}{}_{{\rho }}\Lambda _{{\theta '}}{}^{{\sigma }}\Lambda _{{\iota '}}{}^{{\upsilon }}\cdots \Lambda _{{\kappa '}}{}^{{\phi }}T_{{\sigma \upsilon \cdots \phi }}^{{\mu \nu \cdots \rho }}

    که {\displaystyle \Lambda _{\chi '}{}^{\psi }\,}\Lambda _{{\chi '}}{}^{{\psi }}\, ماتریس معکوس {\displaystyle \Lambda ^{\chi '}{}_{\psi }}\Lambda ^{{\chi '}}{}_{{\psi }} است. تمام تانسورها با همین قانون تبدیل می‌شوند.

    متریک[ویرایش]

    از آنجا که فضازمان ماهیتی چهاربعدی دارد، متریک مینکوفسکی مؤلفه‌هایی دارد که می‌توان آن‌ها را در یک ماتریس ۴ × ۴ نمایش داد.

    {\displaystyle \eta _{\alpha \beta }={\begin{pmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}}\eta _{{\alpha \beta }}={\begin{pmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}

    که با معکوس خود برابر است، {\displaystyle \eta ^{\alpha \beta }}\eta ^{{\alpha \beta }}

    گروه پوانکاره کلی‌ترین گروه تبدیلات است که متریک مینکوفسکی را حفظ می‌کند.

    {\displaystyle \eta _{\alpha \beta }=\eta _{\mu '\nu '}\Lambda ^{\mu '}{}_{\alpha }\Lambda ^{\nu '}{}_{\beta }\!}\eta _{{\alpha \beta }}=\eta _{{\mu '\nu '}}\Lambda ^{{\mu '}}{}_{\alpha }\Lambda ^{{\nu '}}{}_{\beta }\!

    واین تقارن فیزیکی سنگ بنای نسبیت خاص است.

    ناوردایی[ویرایش]

    مجذور طول دیفرانسیل چهار-بردار موقعیت {\displaystyle dx^{\mu }\!}dx^{\mu }\! که به صورت زیر به دست می‌آید،

    {\displaystyle d\mathbf {x} ^{2}=\eta _{\mu \nu }\,dx^{\mu }\,dx^{\nu }=-(c\cdot dt)^{2}+(dx)^{2}+(dy)^{2}+(dz)^{2}\,}d{\mathbf  {x}}^{2}=\eta _{{\mu \nu }}\,dx^{\mu }\,dx^{\nu }=-(c\cdot dt)^{2}+(dx)^{2}+(dy)^{2}+(dz)^{2}\,

    یک ناوردا است. ناوردا بودن به این معناست که مقدار آن در تمام چارچوب‌ها یکسان است، زیرا یک کمیت نرده‌ای (تانسور با مرتبه صفر) است و از این رو در تبدیلات بدیهی اش عبارت Λ ظاهر نمی‌شود. توجه کنید که هرگاه عنصر خط، dx۲، منفی باشد،

    {\displaystyle d\tau ={\sqrt {-d\mathbf {x} ^{2}}}/c}d\tau ={\sqrt  {-d{\mathbf  {x}}^{2}}}/c

    دیفرانسیل زمان ویژه است و اگر dx۲ مثبت باشد، √(dx۲) دیفرانسیل فاصله ویژه خواهد بود.

    سرعت و شتاب در فضای چهاربعدی[ویرایش]

    در نظر گرفتن کمیتهای فیزیکی به عنوان تانسور قوانین تبدیلشان را نیز ساده‌تر می‌سازد. چهار-سرعت Uμ به گونه زیر به دست می‌آید

    {\displaystyle U^{\mu }={\frac {dx^{\mu }}{d\tau }}={\begin{pmatrix}\gamma c\\\gamma v_{x}\\\gamma v_{y}\\\gamma v_{z}\end{pmatrix}}.}U^{\mu }={\frac  {dx^{\mu }}{d\tau }}={\begin{pmatrix}\gamma c\\\gamma v_{x}\\\gamma v_{y}\\\gamma v_{z}\end{pmatrix}}.

    با در دست داشتن این رابطه می‌توان قانون پیچیده ترکیب سرعتها را به رابطه ساده‌ای برای تبدیل چهار-بردار سرعت یک ذره از یک چارچوب به چارچوب دیگر تبدیل نمود. Uμ یک شکل ناوردا نیز دارد:

    {\displaystyle {\mathbf {U} }^{2}=\eta _{\nu \mu }U^{\nu }U^{\mu }=-c^{2}.}{\displaystyle {\mathbf {U} }^{2}=\eta _{\nu \mu }U^{\nu }U^{\mu }=-c^{2}.}

    بنابراین تمام چهاربردارهای سرعت اندازه‌ای برابر c دارند. این به گونه‌ای بیانگر این واقعیت است که در نسبیت، مختصات در حال سکون وجود ندارد: حداقل شما همیشه در حال حرکت در زمان هستید. چهار-شتاب نیز از رابطه

    {\displaystyle A^{\mu }={\frac {dU^{\mu }}{d\tau }}\,.}{\displaystyle A^{\mu }={\frac {dU^{\mu }}{d\tau }}\,.} محاسبه می‌شود.

    اگر از این معدله بوسیله τ، دیفرانسیل بگیریم معادله زیر حاصل می‌شود

    {\displaystyle 2\eta _{\mu \nu }A^{\mu }U^{\nu }=0.\!}2\eta _{{\mu \nu }}A^{\mu }U^{\nu }=0.\!

    بنابراین در نسبیت چهار-بردارهای سرعت و شتاب برهم عمودند.

    تکانه در فضای چهاربعدی[ویرایش]

    تکانه و انرژی در یک چهار-بردار هم وردا با هم ترکیب می‌شوند

    {\displaystyle p_{\nu }=m\,\,\eta _{\nu \mu }U^{\mu }={\begin{pmatrix}-E/c\\p_{x}\\p_{y}\\p_{z}\end{pmatrix}}.}p_{\nu }=m\,\,\eta _{{\nu \mu }}U^{\mu }={\begin{pmatrix}-E/c\\p_{x}\\p_{y}\\p_{z}\end{pmatrix}}.

    که در آن m جرم ناوردا است.

    اندازه ناوردای چهار-بردار تکانه رابطه انرژی-تکانه را نتیجه می‌دهد:

    {\displaystyle \mathbf {p} ^{2}=\eta ^{\mu \nu }p_{\mu }p_{\nu }=-(E/c)^{2}+p^{2}.}{\displaystyle \mathbf {p} ^{2}=\eta ^{\mu \nu }p_{\mu }p_{\nu }=-(E/c)^{2}+p^{2}.}

    این ناوردا یک کمیت نرده‌ای است پس اهمیتی ندارد که در کدام چارچوب محاسبه می‌شود پس می‌توانیم آن را به چارچوبی تبدیل کنیم که در آن تکانه کل برابر صفر است.

    {\displaystyle \mathbf {p} ^{2}=-(E_{\mathrm {rest} }/c)^{2}=-(m\cdot c)^{2}.}{\displaystyle \mathbf {p} ^{2}=-(E_{\mathrm {rest} }/c)^{2}=-(m\cdot c)^{2}.}

    می‌بینیم که انرژی سکون یک ناوردای مستقل است. انرژی سکون را می‌توان حتی برای ذرات و دستگاه‌های در حال حرکت نیز با انتقال آن‌ها به چارچوبی که در آن تکانه صفر است، محاسبه کرد.

    انرژی سکون طبق رابطه بنامی که قبلاً به آن اشاره شد، با جرم مرتبط است:

    {\displaystyle E_{\mathrm {rest} }=mc^{2}.\,}E_{{\mathrm  {rest}}}=mc^{2}.\,

    توجه کنید که جرم سامانه‌هایی که در مرکز چارچوب تکانه‌شان (که در آن تکانه صفر است) اندازه‌گیری می‌شوند برابر با انرژی کل سامانه در این چارچوب است. این مقدار ممکن است با مجموع جرم هریک از سیستم‌ها که در چارچوبهای دیگر اندازه‌گیری شده‌اند برابر نباشد.

    نیرو در فضای چهاربعدی[ویرایش]

    قانون دوم حرکت نیوتن بیان می‌کند که کل نیروی وارد بریک ذره با نرخ تغییر تکانه اش برابر است. همین شکل از قانون دوم نیوتن در مکانیک نسبیتی نیز صادق است. سه-نیرو ی نسبیتی از رابطه زیر به دست می‌آید

    {\displaystyle \mathbf {f} =d\mathbf {p} /dt}{\mathbf  {f}}=d{\mathbf  {p}}/dt

    اگر از جرم نسبیتی استفاده شود:

    {\displaystyle {\frac {d\mathbf {p} }{dt}}={\frac {d(m\mathbf {u} )}{dt}}}{\frac  {d{\mathbf  {p}}}{dt}}={\frac  {d(m{\mathbf  {u}})}{dt}}

    با استفاده از قانون لایب نیتز {\displaystyle d(xy)=xdy+ydx}d(xy)=xdy+ydx:

    {\displaystyle \mathbf {f} ={\frac {d\mathbf {p} }{dt}}=m{\frac {d\mathbf {u} }{dt}}+\mathbf {u} {\frac {dm}{dt}}}{\mathbf  {f}}={\frac  {d{\mathbf  {p}}}{dt}}=m{\frac  {d{\mathbf  {u}}}{dt}}+{\mathbf  {u}}{\frac  {dm}{dt}}

    اگر ذره با سرعت c حرکت نکند، می‌توان نیروی سه بعدی از چارچوب مرجع هم حرکت ذره به چارچوب مرجع ناظر تبدیل نمود. در نتیجه چهار-برداری خواهیم داشت که چهار-نیرو نامیده می‌شود و برابر است با نرخ تغییر چهار-بردار انرژی تکانه نسبت به زمان ویژه. شکل هم وردای چهارنیرو به صورت زیر است:

    {\displaystyle F_{\nu }={\frac {dp_{\nu }}{d\tau }}={\begin{pmatrix}-{d(E/c)}/{d\tau }\\{dp_{x}}/{d\tau }\\{dp_{y}}/{d\tau }\\{dp_{z}}/{d\tau }\end{pmatrix}},}F_{\nu }={\frac  {dp_{{\nu }}}{d\tau }}={\begin{pmatrix}-{d(E/c)}/{d\tau }\\{dp_{x}}/{d\tau }\\{dp_{y}}/{d\tau }\\{dp_{z}}/{d\tau }\end{pmatrix}},

    که در آن τ زمان ویژه است.

    درچارچوب سکون جسم، مؤلفه زمان چهار-نیرو برابر صفر خواهد بود مگر آن‌که "جرم ناوردای " جسم در حال تغییر باشد؛ که در آن صورت برابر با منفی نرخ تغییر جرم ضربدر c خواهد بود. به‌طور کلی مؤلفه‌های چهار-نیرو با مؤلفه‌های سه-نیرو برابر نیستند زیرا سه نیرو به صورت نرخ تغییر تکانه نسبت به مختصات زمان تعریف می‌شود(dp/dt)، در حالیکه چهار-نیرو را نرخ تغییر تکانه نسبت به زمان ویژه تعریف می‌کنیم(dp/dτ)

    مکانیک کوانتومی نسبیتی[ویرایش]

    ترکیب و یکپارچه سازی نسبیت خاص با مکانیک کوانتومی برای ایجاد مکانیک کوانتومی نسبیتی یکی از مسئله‌های حل نشده فیزیک است. گرانش کوانتومی و نظریه همه‌چیز شاخه‌های فعال مورد پژوهش هستند.

    در سال ۱۹۲۸ پل دیراک، یک معادله موج نسبیتی ارائه داد که امروزه به نام وی معادله دیراک خوانده می‌شود[۴۷] و کاملاً با نسبیت خاص و نسخه نهایی نظریه کوانتومی سازگاری داشت. این نظریه نه تنها تکانه زاویه‌ای ذاتی الکترون (اسپین) را توضیح می‌داد بلکه به پیش‌بینی وجود پادذره الکترون (پوزیترون) انجامید.[۴۷][۴۸] ساختار ریز را تنها با نسبیت خاص می‌توان به‌طور کامل توضیح داد. در مکانیک کوانتومی غیر نسبیتی، اسپین قابل توضیح نیست.

    از سوی دیگر وجود پادذره‌ها به این نتیجه می‌انجامد که یکپارچه سازی خام نسبیت و مکانیک کوانتوم امکانپذیر نیست در عوض یک نظریه میدان‌های کوانتومی مورد نیاز است که در آن ذرات می‌توانند در تمام فضا بوجود آیند و نابود شوند. (مانند الکترودینامیک کوانتومی یا کرومودینامیک کوانتومی). این عناصر با مدل استاندارد فیزیک ذرات آمیخته می‌شوند.

    وضعیت نظریه[ویرایش]

    نسبیت خاص در فضای مینکوفسکی تنها هنگامی دقیق است که قدرمطلق پتانسیل گرانشی در ناحیه مورد نظر بسیار کمتر از c۲ باشد.[۴۹] در میدان گرانشی قوی باید از نسبیت عام یاری جست. نسبیت عام در محدوده میدانهای ضعیف به نسبیت خاص تبدیل می‌گردد. در مقیاسهای خیلی کوچک، مثلاً در طول پلانک و کمتر باید آثار کوانتومی را در نظر گرفت که گرانش کوانتومی را نتیجه می‌دهد. اما در مقیاسهای ماکروسکوپیک و در غیاب میدانهای گرانشی قوی، نسبیت خاص در آزمایشهای تجربی دقت بالایی (۱۰−۲۰) را به نمایش می‌گذارد[۵۰] و از این رو از سوی جامعه فیزیک مورد پذیرش قرارگرفته‌است.

    مکانیک نیوتنی از نظر ریاضی در سرعتهای کوچک از نسبیت خاص پیروی می‌کند و از این رو مکانیک کوانتومی را می‌توان مکانیک اجسام متحرک با سرعت پایین دانست. چندین آزمایش که پیش از مقاله ۱۹۰۵ انیشتین انجام شدند اکنون به عنوان گواهی بر درستی این نظریه به‌شمار می‌روند. از میان این آزمایشها، این آگاهی در دسترس است که انیشتین پیش از ۱۹۰۵ از آزمایش فیزو باخبر بود.[۵۱] برخی از تاریخ نگاران بر این باورند که انیشتین حداقل تا سال ۱۸۹۹ از آزمایش مایکلسون-مورلی نیز آگاهی داشته‌است.[۱۸]

    • آزمایش فیزو (۱۸۵۱ و تکرار آن توسط مایکلسون و مورلی در سال ۱۸۸۶) سرعت نور را در رسانه در حال حرکت اندازه‌گیری کرد که نتایج آن با افزودن سرعتهای هم خط در نسبیت، همخوانی دارند.
    • آزمایش بنام مایکلسون-مورلی (۱۸۸۱و۱۸۸۷) پشتوانه‌ای برای این اصل بود که سرعت مرجع مطلقی وجود ندارد.

    شتاب دهنده‌های ذرات، به ذرات شتاب می‌دهند و ویژگی‌های ذرات را در سرعتهای بالا نزدیک به سرعت نور اندازه می‌گیرند. در این سرعتها رفتار ذرات کاملاً با نظریه نسبیت همخوانی دارد و با مکانیک نیوتنی ناسازگار است. اگر این ماشینها بر اساس اصول نسبیتی مهندسی نشده بودند، نمی‌توانستند کار کنند. افزون بر این شمار زیادی از آزمایشهای جدید نیز برای آزمودن نظریه نسبیت انجام شده‌اند. از این دسته آزمایشها می‌توان به موارد زیر اشاره نمود:

    انتقادات علیه نسبیت خاص اکثراً در سالهای نخستین انتشار نظریه در دهه ۱۹۰۰ وارد شدند و این نظریه را از دیدگاه‌های علمی، شبه علمی، فلسفی و ایدئولوژیک مورد انتقاد قرار دادند. با وجود اینکه برخی از این انتقادات از پشتیبانی دانشمندان بنام نیز برخوردار شدند، نظریه نسبیت امروزه به عنوان یک نظریه قائم بالذات و سازگار با شواهد تجربی شناخته می‌شود و پایه برخی از نظریات موفق از جمله الکترودینامیک کوانتومی می‌باشد

    پدیده های فیزیکی

    پدیده های فیزیکی

     

    علم فیزیک رفتار و اثر متقابل ماده و نیرو را مطالعه می‌کند. مفاهیم بنیادی پدیده‌های طبیعی تحت عنوان قوانین فیزیک مطرح می‌شوند. این قوانین به توسط علوم ریاضی فرمول بندی می‌شوند، بطوری که قوانین فیزیک و روابط ریاضی باهم در توافق بوده و مکمل هم هستند و دوتایی قادرند کلیه پدیده‌های فیزیکی را توصیف نمایند.

    تاریخچه علم فیزیک

    • از روزگاران باستان مردم سعی می‌کردند رفتار ماده را بفهمند. و بدانند که: چرا مواد مختلف خواص متفاوت دارند؟ ، چرا برخی مواد سنگینترند؟ و ... همچنین جهان ، تشکیل زمین و رفتار اجرام آسمانی مانند ماه و خورشید برای همه معما بود.


    قبل از ارسطو تحقیقاتی که مربوط به فیزیک می‌شد ، بیشتر در زمینه نجوم صورت می‌گرفت. علت آن در این بود که لااقل بعضی از مسائل نجوم معین و محدود بود و به آسانی امکان داشت که آنها را از مسائل فیزیک جدا کنند. در برابر سؤالاتی که پیش می‌آمد گاه خرافاتی درست می‌کردند، گاه تئوریهایی پیشنهاد می‌شد که بیشتر آنها نادرست بود.

    این تئوریها اغلب برگرفته از عبارتهای فلسفی بودند و هرگز بوسیله تجربه و آزمایش تحقیق نمی‌شدند و بعضی مواقع نیز جوابهایی داده می‌شد که لااقل بصورت اجمالی و با تقریب کافی به نظر می‌رسید.

    • جهان به دو قسمت تقسیم می‌شد: جهان تحت فلک قمر و مابقی جهان. مسائل فیزیکی اغلب مربوط به جهان زیر ماه بود و مسائل نجومی مربوط به ماه و آن طرف ماه نیز «فیزیک ارسطو» یا بطور صحیحتر «فیزیک مشائی» بود که در چند کتاب مانند «فیزیک» ، « آسمان» ، « آثار جوی» ، « مکانیک» ، « کون و فساد» و حتی«مابعدالطبیعه» دیده می‌شد.
    • تا اینکه در قرن 17 ، گالیله برای اولین بار به منظور قانونی کردن تئوریهای فیزیک ، از آزمایش استفاده کرد. او تئوریها را فرمولبندی کرد و چندین نتیجه از دینامیک و اینرسی را با موفقیت آزمایش کرد. پس از گالیله ، اسحاق نیوتن ، قوانین معروف خود (قوانین حرکت نیوتن) را ارائه کرد که به خوبی با تجربه سازگار بودند.
    • بدین ترتیب فیزیک جایگاه علمی و عملی خود را یافت و روز به روز پیشرفت کرد، مباحث آن گسترده‌تر شد، تا آنجا که قوانین آن از ریزترین ابعاد اتمی تا وسیعترین ابعاد نجومی را شامل می‌شود. اکنون فیزیک مانند زنجیری محکم با بقیه علوم مرتبط است و هنوز هم به سرعت در حال گسترش و پیشرفت می‌باشد.

    نقش فیزیک در زندگی

    • هر فرد بزرگ یا کوچک ، درس خوانده یا بی‌سواد ، شاغل یا بیکار خواه ناخواه با فیزیک زندگی می‌کند. عمل دیدن و شنیدن ، عکس العمل در برابر اتفاقات ، حفظ تعادل در راه رفتن و ... نمونه‌هایی از امور عادی ولی در عین حال وابسته به فیزیک می‌باشند.
    • پدیده‌های جالب طبیعی نظیر رنگین کمان ، سراب ، رعد و برق ، گرفتگی ماه و خورشید و ... همه با فیزیک توجیه می‌شوند.
    • برنامه‌های رادیو ، تلویزیون ، ماهواره ، اینترنت ، تلفن و ... با کمک فیزیک مخابره می‌شوند.
    • با این نمونه‌های ساده می‌توان تصور کرد که اگر فیزیک نبود و اگر روزی قوانین فیزیک بر جهان حاکم نباشند، زندگی و ارتباطات مردم شدیدا دچار مشکل می‌شود.

     

    فیزیک و سایر علوم

    ·         فیزیک، دینامیک و ساختار درونی اتمها را توصیف می‌کند و از آنجا که همه مواد شامل اتم هستند، پس هر علمی که در ارتباط با ماده باشد، با فیزیک نیز مرتبط خواهد بود. علومی نظیر: شیمی ، زیست شناسی ، زمین شناسی ، پزشکی ، دندانپزشکی ، داروسازی ، دامپزشکی ، فیزیولوژی ، رادیولوژی ، مهندسی مکانیک ، برق ،الکترونیک ، مهندسی معدن ، معماری ، کشاورزی و ... .

    • فیزیک در صنعت ، معدن ، دریانوردی ، هوانوردی و ... نیز کاربرد فراوان دارد. اینکه ابزار کار هر شغلی و هر علمی مبتنی براستفاده ازقوانین و مواد فیزیکی است، نقش اساسی فیزیک در سایر علوم و رشته‌ها را نمایان می‌کند. علاوه برآن استفاده روز افزون از اشعه لیزر در جراحیها و |دندانپزشکی ، رادیوگرافی با اشعه ایکس در رادیولوژی ، جوشکاری صنعتی و ... نمونه‌هایی از کاربردهای بی‌شمار فیزیک در علوم دیگر می‌باشند.

    فیزیک و آینده

    با این روند رو به رشدی که علم فیزیک در کنار سایر علوم دارد، می‌توان امیدوار بود که در آینده به چراها و چگونگی‌های عالم طبیعت پاسخ داده شود و این دنیای فیزیک سکوی پرتاب به عالم متا فیزیک باشد.


    در آینده شاید فیزیک بتواند:

    ماهیت فیزیک مدرن

    فیزیک مدرن/امواج

     
    پرش به ناوبریپرش به جستجو
    Gnome-go-last.svg
    Gnome-go-first.svg

    مقدمه[ویرایش]

    به هر آشفتگی در محیط که در فضا یا فضازمان منتشر می‌شود و اغلب حامل انرژی است موج می‌گویند. اگر این آشفتگی در میدان‌های الکترومغناطیسی باشد، آن را موج الکترومغناطیسی می‌نامند. در امواج الکترومغناطیسی میدان‌های الکتریکی و مغناطیسی به طور عمود بر یکدیگر نوسان می‌کنند و با سرعت نور انتشار پیدا می‌کنند. نور و امواج رادیویی از این نوع هستند. امواج مکانیکی امواجی ساده‌تر هستند، که مشهورترین آنها امواج صوت، امواج زلزله و امواج آب است.

    موج‌ها به دو دسته امواج طولی و امواج عرضی تقسیم می‌شوند. در امواج طولی، سرعت انتشار موج موازی با حرکت نوسانی آن است، در حالی که، در امواج عرضی این سرعت عمود بر آن است. امواج الکترو مغناطیسی از نوع امواج عرضی هستند. [۱]

    تعریف امواج الکترومغناطیسی[ویرایش]

    امواج الکترومغناطیسی یک رده از امواج است که دارای مشخصات زیر است:

    امواج الکترومغناطیسی دارای ماهیت و سرعت یکسان هستند و فقط از لحاظ فرکانس، یا طول موج باهم تفاوت دارند

    در طیف امواج الکترومغناطیس هیچ شکافی وجود ندارد. یعنی هر فرکانس دلخواه را می‌توانیم تولید کنیم.

    برای مقیاسهای بسامد یا طول موج ، هیچ حد بالا یا پائین تعیین شده‌ای وجود ندارد.

    از جمله منابع زمینی امواج الکترومغناطیسی می‌توان به امواج دستگاه رله تلفن، چراغ‌های روشنایی و نظایر آن اشاره کرد.

    این امواج برای انتشار خود نیاز به محیط مادی ندارند.

    قسمت عمده این فیزیک امواج دارای منبع فرازمینی هستند.

    امواج الکترومغناطیسی جزو امواج عرضی هستند.

    نکات مهم امواج[ویرایش]

    [۲]

    نکته ۱ - آشفتگی که در يک محيط کشسان می تواند منتشر شود موج ناميده می شود .

    نکته ۲ - محيطی کشسان است که دو ويژگی داشته باشد: ۱-قابليت تبديل انرژی پتانسيل به جنبشی و بر عکس را داشته باشد . ۲- نيروی برگرداننده ای در محيط وجود داشته باشد که تغيير در محيط را به وضع اوليه باز گرداند .

    نکته ۳ - موج مکانيکی ، موجی است که برای انتشار به محيط مادی نياز دارد مانند صوت .

    نکته ۴ - موج عرضی، موجی است که راستای ارتعاشش بر راستای انتشار آن عمود باشد مانند موج طناب.

    نکته ۵ - موج طولی، موجی است که راستای انتشار و ارتعاشش بر هم منطبق باشد مانند صوت .

    نکته ۶ - طول موج ، مسافتی است که موج در يک دوره می پيمايد و نماد آن λ می‌یاشد.

    λ = V . T

    نکته ۷ - تابع موج ، معادله موجی است که برای تمام نقاط محيط نوشته شده باشد .

    ( U=Asin( Ψt-Kx

    نکته ۸ - در تابع موج ، K عدد موج ناميده می شود و تغيير فاز حرکت دو نقطه به فاصله يک متر در هر لحظه است .

    K=2Π/λ

    نکته ۹ - اگر موج در خلاف محور x منتشر شود معادله آن به صورت زير است :

    (X=Asin(Ψt+Kx

    نکته ۱۰ - تابع موجی طولی که در جهت x ، y منتشر شود بصورت زير است :

    ( Uy=Asin(Ψt-Ky

    ( Ux=Asin(Ψt-Kx

    نکته ۱۱ - تابع موج عرضی که در جهت x ، y منتشر می شود بصورت زير است :

    (Ux=Asin(Ψt-Ky

    (Uy=Asin(Ψt-Kx

    نکته ۱۲ -اگر دو موج همزمان به يک نقطه از محيط انتشار برسند آن نقطه با معادله موج بر آيند آنها به ارتعاش در می آيد .

    yt=y1+y2

    نکته ۱۳ - نقاط هم فاز، نقاطی هستند که فاصله آنها از هم مضرب صحيحی از طول موج باشد.

    x=nλ

    نکته ۱۴ - نقاط در فاز مخالف، نقاطی هستند که فاصله آنها از هم مضرب فردی از نصف طول موج باشد.

    x=(2n+1)λ/2

    نکته ۱۵ - اگر دو موج با دامنه و بسامد يکسان در فاز مخالف به يک نقطه از محيط برسند همديگر را خنثی می کنند و آن نقطه ساکن می ماند .

    نکته ۱۶ - اگر دو موج با دامنه و بسامد يکسان بصورت هم فاز به يک نقطه از محيط برسند آن نقطه با دامنه ای دو برابر با همان بسامد به نوسان در می آيد.

    ليست صفحات

    تعداد صفحات : 2
    صفحه قبل 1 2 صفحه بعد
    تبلیغات
    نویسندگان
    ورود کاربران
    نام کاربری
    رمز عبور

    » رمز عبور را فراموش کردم ؟
    عضويت سريع
    نام کاربری
    رمز عبور
    تکرار رمز
    ایمیل
    کد تصویری
    تبادل لینک هوشمند

      تبادل لینک هوشمند

      برای تبادل لینک ابتدا ما را با عنوان مقالات علمی درباره فیزیک و آدرس saintific.LXB.ir لینک نمایید سپس مشخصات لینک خود را در زیر نوشته . در صورت وجود لینک ما در سایت شما لینکتان به طور خودکار در سایت ما قرار میگیرد.






    آخرین نظرات کاربران
    عنوان آگهی شما

    توضیحات آگهی در حدود 2 خط. ماهینه فقط 10 هزار تومان

    عنوان آگهی شما

    توضیحات آگهی در حدود 2 خط. ماهینه فقط 10 هزار تومان

    به بانک مقالات فیزیک امتیاز دهید

    تماس با ما